Forschungsbericht

Kompetenzzentrum für Hochwassermanagement & Bauvorsorge

September 2015

Dipl.-Ing. Michael Eiden
M. Sc. Corinna Gall
Prof. Dr. Robert Jüptner
Dr. Hartwig Vietinghoff
Vorwort

In diesem Zusammenhang stellt sich die Frage, wie die Betroffenen mit den potenziellen Hochwasserrisiken verantwortungsvoll umgehen können. Mit welchen hochwasserbedingten Auswirkungen ist zu rechnen? Welche Instrumente und Methoden können zur Verbesserung der Hochwasservorsorge eingesetzt werden? Mit diesen Fragestellungen befasst sich der vorliegende Forschungsbericht des Kompetenzzentrums für Hochwassermanagement und Bauvorsorge.

(im Namen der Verfasser)

Prof. Dr. Robert Jünpner
Inhaltsverzeichnis

Vorwort ... 2

1 Fachlicher Hintergrund .. 5

2 Hochwasserrisikomanagement für kritische Infrastrukturen ... 8

 2.1 Was sind kritische Infrastrukturen? .. 9
 2.2 Aktueller Wissensstand .. 11
 2.3 Arbeiten des Kompetenzzentrums ... 12
 2.4 Hochwasserrisikoanalyse für kritische Infrastrukturen ... 13
 2.4.1 Kritikalitätsabschätzung ... 15
 2.4.2 Gefährdungsanalyse ... 15
 2.4.3 Vulnerabilitätsanalyse .. 18
 2.5 Mögliche Schutzmaßnahmen für kritische Infrastrukturen ... 21
 2.5.1 Stromversorgung ... 21
 2.5.2 Trinkwasserversorgung ... 25
 2.5.3 Abwasserentsorgung ... 29
 2.5.4 Telekommunikationsversorgung ... 32
 2.5.5 Gesundheitsversorgung .. 35

2.6 Weiterer Forschungsbedarf ... 40

3 Hochwasserrisikomanagement für kleine und mittlere Unternehmen (KMU) 41

 3.1 Aktueller Wissensstand ... 42
 3.2 Arbeiten des Kompetenzzentrums ... 43
 3.3 Klassifizierung von KMUs .. 44
 3.4 Betriebliche Hochwasser-Notfallkonzepte .. 46
 3.4.1 Besonderheiten von KMUs hinsichtlich der Hochwassergefährdung 46
 3.4.2 Schutzziele von KMUs .. 48
 3.4.3 Analyse des Schutzbedarfs .. 49
 3.4.4 Organisatorische Schutzmaßnahmen .. 50
 3.4.5 Bauliche Schutzmaßnahmen ... 52
 3.4.6 Versicherungsrechtliche Schutzmaßnahmen ... 52

3.5 Erfahrungen aus den Fallstudien ... 54

3.6 Checkliste zur Entwicklung eines Notfallkonzeptes für Unternehmen 54

3.7 Weiterer Forschungsbedarf ... 56

4 Hochwasser-Notfallkonzepte für die kommunale Ebene ... 57

 4.1 Aktueller Wissensstand und Arbeiten des Kompetenzzentrums 58
 4.2 Was sind kommunale Hochwasser-Notfallkonzepte? ... 58
 4.3 Welche Faktoren sind bei der Aufstellung eines kommunalen Hochwasser-Notfallkonzeptes zu berücksichtigen? .. 59
 4.3.1 Analyse der Hochwassersituation ... 60
4.3.2 Umgang mit kritischen Infrastrukturen ... 63
4.3.3 Beteiligung der Bevölkerung ... 63
4.4 Hochwasser-Notfallkonzepte für Kommunen mit überörtlichem Hochwasserschutz (technische Hochwasserschutzanlagen) ... 69
4.5 Weiterer Forschungsbedarf ... 70

5 Hochwasser-Gebäudecheckliste für Privatpersonen .. 72
 5.1 Einführung ... 73
 5.2 Vergleichsprojekt DWA/HKC-Hochwasserpass .. 73
 5.3 Arbeiten des Kompetenzzentrums .. 74
 5.4 Fragenkomplexe der Hochwasser-Gebäudecheckliste 75
 5.5 Überprüfung der Hochwasser-Gebäudecheckliste in der Praxis 77
 5.6 Die Online-Version der Hochwasser-Gebäudecheckliste 78
 5.7 Weiterer Forschungsbedarf ... 80

6 Fazit und Ausblick .. 81

7 Anhang ... 84
 7.1 Mögliche Schutzmaßnahmen für verschiedene Sektoren der kritischen Infrastrukturen gegen Hochwasser ... 85
 7.2 Checkliste zur Entwicklung eines Notfallkonzeptes für Unternehmen 94

Literaturverzeichnis .. 103
Abkürzungsverzeichnis .. 110
Abbildungsverzeichnis .. 112
Tabellenverzeichnis ... 114
1 Fachlicher Hintergrund

AUTOREN: CORINNA GALL, PROF. DR. ROBERT JÜPNER, DR. HARTWIG VIETING-HOFF
Das Kompetenzzentrum für Hochwassermanagement und Bauvorsorge beschäftigt sich u.a. mit verschiedenen Bereichen der Hochwasservorsorge. Der Vorsorgeaspekt im Hochwasserrisikomanagement ist von zentraler Bedeutung, denn die Erfahrungen der vergangenen großen Hochwassereignisse haben gezeigt, dass nur durch eine zielgerichtete und effiziente Hochwasservorsorge zukünftige Hochwassereignisse erfolgreich bewältigt und die Schäden minimiert werden können.

Auch in Unternehmen, auf die bei einem Hochwasser insbesondere aufgrund der Betriebsausfälle ein Großteil der insgesamt verursachten Schäden entfällt, ist die Prävention vor einem Hochwasser sinnvoll und zweckmäßig. So wird in der EG-HWRM-RL gefordert, die hochwasserbedingten nachteiligen Folgen für die wirtschaftlichen Tätigkeiten in den Mitgliedstaaten der EU, als eines von insgesamt vier Schutzgütern, zu verringern. Dabei stehen nicht nur Großunternehmen, sondern auch kleine und mittlere Unternehmen (KMUs) in der Pflicht zur Eigenvorsorge.

Die Erkenntnisse über das Hochwasserrisiko für kritische Infrastrukturen und Unternehmen sind auch für die kommunale Ebene relevant, denn im Sinne der Daseinsvorsorge sind Kommunen dazu verpflichtet, ihre Bürger mit verschiedenen Dienstleistungen und Produkten zu versorgen. Daher ist es zu empfehlen, das Hochwasserrisiko für die kritischen Infrastrukturen sowie die Unternehmen in einer Kommune zu analysieren und Handlungsoptionen aufzuzeigen, um potenzielle Hochwasserschäden zu reduzieren.

Aber nicht nur Kommunen sind bei einem Hochwassereignis verantwortlich, sondern auch die Bevölkerung. Gemäß § 5 WHG gilt die Pflicht zur Eigenvorsorge, nach der alle Bürgerinnen und Bürger im Rahmen des Möglichen dazu aufgefordert sind, geeignete Vorsorgemaßnahmen zum Schutz vor Hochwasser und zur Schadensreduzierung zu treffen. Als effizientes Instrument zur Minderung der potenziellen Hochwasserschäden am Privatgebäude kann die Hochwasser-Gebäudecheckliste des Kompetenzzentrums für Hochwassermanagement und Bauvorsorge dienen, welche darauf abzielt, die Hauseigentümer bei der Beurteilung des Hochwasserrisikos zu unterstützen und möglich Maßnahmen zur Risikominderung zu identifizieren (http://www.hochwassermanagement.rlp.de/servlet/is/175642).
Im Rahmen dieses Forschungsberichts sollen die Arbeitsschwerpunkte des Kompetenzzentrums für Hochwassermanagement und Bauvorsorge in den Jahren 2014 und 2015 erläutert und der weitere Forschungsbedarf in diesen Themengebieten aufgezeigt werden. Dabei stehen die folgenden Fragestellungen im Vordergrund:

- Welche Möglichkeiten bestehen, mit dem Hochwasserrisiko für kritische Infrastrukturen bestmöglich umzugehen?
- Wie können medizinische Einrichtungen sich auf ein potenzielles Hochwasserereignis angemessen vorbereiten, um Schäden zu reduzieren?
- Wie können kleine und mittlere Unternehmen den Umgang mit Hochwasser verbessern und zielführende Vorsorgemaßnahmen treffen?
- Auf welche Weise können Kommunen sich auf (insbesondere seltene) Hochwasserereignisse vorbereiten, um potenzielle Schäden so weit wie möglich zu verringern?
- Wie können Privatpersonen das Hochwasserrisiko für ihr eigenes Gebäude einschätzen und angemessene Vorsorgemaßnahmen ergreifen?
- Welche Informationen zum individuellen Hochwasserrisiko und zu möglichen Schutzmaßnahmen am eigenen Gebäude kann die vom Kompetenzzentrum entwickelte Hochwasser-Gebäudecheckliste für Privatpersonen liefern?

Diese Fragen spiegeln die Forschungsschwerpunkte des Kompetenzzentrums wider und werden im Folgenden näher erläutert.
2 Hochwasserrisikomanagement für kritische Infrastrukturen

AUTOREN: CORINNA GALL, MICHAEL EIDEN, PROF. DR. ROBERT JÜPNER
2.1 Was sind kritische Infrastrukturen?

Insbesondere bei Hochwasserereignissen sind kritische Infrastrukturen potenziell gefährdet, weshalb wiederum höhere Anforderungen an deren Schutz gestellt werden müssen. Eine kritische Infrastruktur ist vulnerabel bzw. verletzbar, wenn sie sich nicht oder nur in abgeschwächtem Umfang an veränderte Rahmenbedingungen anpassen kann. Dabei wird der Indikator der Anpassungsfähigkeit definiert als „relatives Maß für die Fähigkeit einer kritischen Infrastruktur, sich verändernden Rahmenbedingungen so anzupassen, dass sie durch diese Änderungen nicht in ihrer Funktionsfähigkeit beeinträchtigt wird und damit ihre Leistung kontinuierlich erbringen kann“ (LENZ 2009). Demzufolge tragen Maßnahmen, die in einer erhöhten Anpassungsfähigkeit an sich ändernde Rahmenbedingungen resultieren, zur Verringerung der Vulnerabilität der kritischen Infrastrukturen bei.

Abbildung 1: Sektoren kritischer Infrastrukturen (BBK o.J.a)
Die neun Sektoren der kritischen Infrastrukturen werden wiederum in Branchen untergliedert, die in Tabelle 1 dargestellt sind. Dabei können die Sektoren aufgrund der Besonderheiten bezüglich ihrer Funktion, Struktur und Technik in technische Basisinfrastrukturen und sozioökonomische Dienstleistungsinfrastrukturen unterteilt werden (BMI 2009).

Tabelle 1: Einteilung der Branchen zu den Sektoren der kritischen Infrastrukturen (nach BBK o.J.b)

<table>
<thead>
<tr>
<th>Sektoren</th>
<th>Branchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Basisinfrastrukturen</td>
<td></td>
</tr>
<tr>
<td>Energie</td>
<td>• Elektrizität</td>
</tr>
<tr>
<td></td>
<td>• Gas</td>
</tr>
<tr>
<td></td>
<td>• Mineralöl/Benzin</td>
</tr>
<tr>
<td>Informationstechnik und Telekommunikation</td>
<td>• Telekommunikation</td>
</tr>
<tr>
<td></td>
<td>• Informationstechnik</td>
</tr>
<tr>
<td>Wasser</td>
<td>• Öffentliche Wasserversorgung</td>
</tr>
<tr>
<td></td>
<td>• Öffentliche Abwasserbeseitigung</td>
</tr>
<tr>
<td>Transport und Verkehr</td>
<td>• Luftfahrt</td>
</tr>
<tr>
<td></td>
<td>• See-/Binnenschifffahrt</td>
</tr>
<tr>
<td></td>
<td>• Schienenverkehr</td>
</tr>
<tr>
<td></td>
<td>• Straßenverkehr</td>
</tr>
<tr>
<td></td>
<td>• Logistik</td>
</tr>
<tr>
<td>Sozioökonomische Dienstleistungsinfrastrukturen</td>
<td></td>
</tr>
<tr>
<td>Gesundheit</td>
<td>• Medizinische Versorgung</td>
</tr>
<tr>
<td></td>
<td>• Arzneimittel und Impfstoffe</td>
</tr>
<tr>
<td></td>
<td>• Labore</td>
</tr>
<tr>
<td>Ernährung</td>
<td>• Ernährungswirtschaft</td>
</tr>
<tr>
<td></td>
<td>• Lebensmittelhandel</td>
</tr>
<tr>
<td>Finanz- und Versicherungswesen</td>
<td>• Banken</td>
</tr>
<tr>
<td></td>
<td>• Börsen</td>
</tr>
<tr>
<td></td>
<td>• Versicherungen</td>
</tr>
<tr>
<td></td>
<td>• Finanzdienstleister</td>
</tr>
<tr>
<td>Staat und Verwaltung</td>
<td>• Regierung und Verwaltung</td>
</tr>
<tr>
<td></td>
<td>• Parlament</td>
</tr>
<tr>
<td></td>
<td>• Justizeinrichtungen (Polizei, JVA)</td>
</tr>
<tr>
<td></td>
<td>• Notfall-/Rettungswesen inkl. Katastrophenschutz</td>
</tr>
<tr>
<td>Medien und Kultur</td>
<td>• Rundfunk (Fernsehen und Radio)</td>
</tr>
<tr>
<td></td>
<td>• gedruckte und elektronische Presse</td>
</tr>
<tr>
<td></td>
<td>• Kulturgut</td>
</tr>
<tr>
<td></td>
<td>• symbolträchtige Bauwerke</td>
</tr>
</tbody>
</table>

2.2 Aktueller Wissensstand

Da sich zum Schutz kritischer Infrastrukturen gegen Hochwasser grundsätzlich die Möglichkeit bietet, die Strategien der Bauvorsorge anzuwenden, sei an dieser Stelle ferner auf das DWA-Merkblatt 553 „Hochwasserangepasstes Planen und Bauen“ verwiesen, welches im Entwurf vorliegt und nach Veröffentlichung den anerkannten Stand der Technik in diesem Themenbereich definiert.
2.3 Arbeiten des Kompetenzzentrums

Das Kompetenzzentrum für Hochwassermanagement und Bauvorsorge hat in den Jahren 2014 und 2015 einen methodischen Ansatz zur Bewertung des Hochwasserrisikos für kritische Infrastrukturen auf kommunaler Ebene entwickelt, welcher inhaltlich an die auf Bundesebene erzielten Forschungsergebnisse des BMI und des BBK anknüpft (vgl. BMI 2011). Dabei wird über die Hochwassergefährdung am Standort der Infrastruktur und die dadurch hervorgerufenen Auswirkungen an der Infrastruktur-Anlage das Hochwasserrisiko für die jeweilige kritische Infrastruktur im Rahmen einer Verschneidung in einem Geographischen Informationssystem (GIS) abgeschätzt. Im folgenden Kapitel 2.4 wird die entwickelte Methodik beschrieben.

Auf Basis dieser methodischen Vorgehensweise können Kommunen prüfen, inwiefern die kritischen Infrastrukturen in ihrem Verwaltungsgebiet bei einem potenziellen Hochwassereignis funktionsfähig bleiben. Je nach Ergebnis dieser Hochwasserrisikoanalyse ergibt sich für die Kommunen ein Handlungserfordernis, um die Funktionsfähigkeit der Infrastrukturen auch bei Hochwasser aufrecht zu erhalten oder ggf. schadensmindernde Maßnahmen an den jeweiligen Anlagen zu treffen. Darüber hinaus sind diese Ergebnisse für die kommunale Ebene auch im Hinblick auf die Einleitung einer Evakuierung von besonderer Bedeutung.

Im Auftrag der Länder Saarland, Rheinland-Pfalz und Luxemburg hat das Kompetenzzentrum in den letzten Jahren verschiedene örtliche Pilotprojekte in Rheinland-Pfalz zum Hochwasserrisikomanagement betreut, in denen die Hochwasservorsorge für kritische Infrastrukturen eine entscheidende Rolle spielt. In diesem Zusammenhang konnte der methodische Ansatz zur Beurteilung des Hochwasserrisikos für kritischen Infrastrukturen in der Praxis angewendet werden.

Die grundlegende Methodik wurde erstmals im Rahmen eines Pilotprojektes an der Mosel im Jahr 2013 ausgearbeitet und anhand von zwei weiteren Pilotprojekten am Rhein stetig weiterentwickelt (vgl. GALL ET AL. 2014). Hinsichtlich der Abschätzung der Hochwassergefährdung am Standort der Infrastruktur kann für alle Infrastrukturen die gleiche methodische Vorgehensweise angewendet werden. Im Gegensatz dazu sind die hochwasserbedingten Auswirkungen für jeden Sektor der kritischen Infrastrukturen gesondert zu betrachten. Aus diesem Grund werden in Kapitel 2.5 dieses Forschungsberichtes die sektorenspezifischen Auswirkungen für die kritischen Infrastrukturen, die in den vergangenen Pilotprojekten vom Kompetenzzentrum vorrangig betrachtet wurden, grundsätzlich dargestellt.

Da die Hochwassergefährdung medizinischer Einrichtungen vor allem aufgrund des enormen Evakuierungsauflandes und des sehr großen Schadenspotenzials durch Betriebsausfall und Sachschäden eine Besonderheit darstellt, wurden die Auswirkungen eines Hochwassers auf ein Krankenhaus anhand eines Praxisbeispiels am Rhein näher beleuchtet. Für das untersuchte Krankenhaus wurden aufbauend darauf Handlungsempfehlungen zur Erarbeitung eines betrieblichen Hochwasser-Notfallkonzeptes entwickelt.
2.4 Hochwasserrisikoanalyse für kritische Infrastrukturen

Hochwassereignisse haben das Potenzial die stetige Verfügbarkeit der kritischen Infrastrukturen zu gefährden. Daher ist die Kenntnis des Hochwasserrisikos zwingend erforderlich, damit die finanziell und personell begrenzten Ressourcen zum Schutz der Infrastrukturen effizient eingesetzt werden können (BMI 2011). Ein wesentlicher Bestandteil der Arbeit des Kompetenzzentrums besteht darin, das potenzielle Hochwasserrisiko für die Infrastrukturen in der Praxis abzuschätzen, um in den betroffenen Kommunen Risikoschwerpunkte aufzuziehen und so die verantwortlichen Betreiber, falls erforderlich, zum Handeln zu motivieren.

Obwohl Risikoanalysen für viele verschiedene Fragestellungen eingesetzt und eine Vielzahl unterschiedlicher Methoden angewendet werden, zielen sie im Wesentlichen auf die Beantwortung der folgenden drei Fragen ab (MERZ 2006; KAPLAN & GARRICK 1981):

- Was sind die möglichen Gefahren und Schadensereignisse? (Gefährdungsanalyse und Szenariobildung)
- Wie wahrscheinlich sind Schadensereignisse? (Quantifizierung der Eintrittswahrscheinlichkeit der Schadensereignisse)
- Was sind die Konsequenzen, wenn ein Schadensereignis eintritt? (Vulnerabilitätsanalyse)

Um das Hochwasserrisiko für die kritischen Infrastrukturen abzuschätzen, wird im Rahmen der Arbeiten des Kompetenzzentrums eine Risikoanalyse durchgeführt, welche sich grundsätzlich aus einer Kritikalitätsabschätzung, einer Gefährdungs- und Vulnerabilitätsanalyse sowie einer Risikoermittlung zusammensetzt. Diese Schritte der Risikoanalyse sind in Tabelle 2 näher erläutert.

Tabelle 2: Abfolge einer Risikoanalyse für kritische Infrastrukturen (in Anlehnung an BMI 2011)

<table>
<thead>
<tr>
<th>Schritte der Risikoanalyse</th>
<th>Fragen</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kritikalitätsabschätzung</td>
<td>Die Beeinträchtigung welcher kritischen Infrastruktur führt zu weitreichenden Folgen im Untersuchungsgebiet?</td>
<td>Kriterien zur Ermittlung der Kritikalität: • Leben und Gesundheit • Volumen der Betroffenheit • Auswirkungszeitpunkt der Beeinträchtigung • Vertragliche, ordnungspolitische oder gesetzliche Relevanz der Beeinträchtigung • Wirtschaftliche Schäden • Konsequenzen für die Umwelt</td>
</tr>
</tbody>
</table>
Gefährdungsanalyse | Welche Gefahren können auftreten? | Kriterien zur Dokumentation der relevanten Gefahren
- Exposition
- Intensität
- räumliche/zeitliche Ausdehnung
- Vorwarnzeiten
- Sekundäreffekte
- Referenzereignisse
- Eintrittswahrscheinlichkeit

Vulnerabilitätsanalyse | Mit welchen Auswirkungen ist im Hinblick auf die Gefahrenbelastung zu rechnen? | Faktoren der Verwundbarkeit:
- Funktionsanfälligkeit
- Ersetzbarkeit

Risikoermittlung | Wie hoch ist das Gesamtrisiko? | Abschätzungen aus der Gefährdungs- und der Vulnerabilitätsanalyse werden verknüpft und daraus das Risiko für die jeweilige Infrastruktur abgeleitet

Abbildung 2: Schema der Risikoanalyse für kritische Infrastrukturen (in Anlehnung an BMI 2011)
2.4.1 Kritikalitätsabschätzung

Auch wenn beim Ausfall jeder kritischen Infrastruktur weitreichende nachteilige Folgen zu erwarten sind, kann dennoch eine Priorisierung der Infrastrukturen im Hinblick auf die Bedeutung der negativen Auswirkungen für die Bevölkerung getroffen werden. So ist es im Hochwasserfall für die Bevölkerung zunächst wichtiger, dass eine funktionsfähige Stromversorgung gewährleistet ist, als dass die Funktionsfähigkeit des Finanzsektors sichergestellt wird.

Aufgrund der Erfahrungen aus verschiedenen Pilotprojekten in Rheinland-Pfalz wird die Beeinträchtigung der Sektoren Energie und Wasser als besonders schwerwiegend angesehen. Bei einem Ausfall dieser Infrastrukturen kann die Versorgung der Bevölkerung mit lebenswichtigen Gütern nicht mehr sichergestellt werden, sodass die betroffenen Bürgerinnen und Bürger evakuiert werden sollten. In Bezug auf eine mögliche Evakuierung stellen diese Sektoren damit die limitierenden Faktoren dar, da die Menschen insbesondere ohne funktionierende Strom-, Wärme und Trinkwasserversorgung nicht in ihren Häusern bleiben können. Darüber hinaus ist der Sektor der Informationstechnik und Telekommunikation wichtig, um im Hochwasserfall die Bevölkerung über die drohende Gefahr zu informieren und rechtzeitig zu warnen.

Neben diesen technischen Infrastrukturen spielt auch die Gesundheitsversorgung, welche den sozioökonomischen Infrastrukturen zuzuordnen ist, eine wesentliche Rolle, da die Bevölkerung auch im Falle eines Hochwassers auf eine funktionierende medizinische Versorgung angewiesen ist. Aus diesem Grund ist es unverzichtbar, dass sich Krankenhäuser und andere medizinische Einrichtungen speziell auf die Hochwassergefahr vorbereiten und vorsorgende Maßnahmen zum Schutz ihrer Patienten ergreifen (vgl. Abschnitt 2.5.5).

2.4.2 Gefährdungsanalyse

In der Gefährdungsanalyse werden alle bedeutsamen Gefahren identifiziert, die am Standort der kritischen Infrastruktur auftreten können. Da sich das Kompetenzzentrum jedoch vorrangig mit Flusshochwasser beschäftigt, wird in diesem Forschungsbericht dargelegt, wie das von Flüssen ausgehende Hochwasserrisiko für Infrastrukturen analysiert werden kann.

Für die Abschätzung der Hochwassergefahr der kritischen Infrastrukturen ist sowohl der Wasserstand am nächstgelegenen Bezugspegel als auch der Wasserstand an den betroffenen Infrastrukturanlagen selbst für verschiedene Hochwasserszenarien von Bedeutung. Darüber hinaus spielt auch die Fließgeschwindigkeit sowie die Verunreinigungen und Treibgut im Hochwasser eine wichtige Rolle für die Einschätzung möglicher Hochwasserschäden. Auf der Grundlage dieser Kenntnisse können einerseits Alarm- und Einsatzpläne und andererseits auch bauliche bzw. andere vorsorgende Maßnahmen für die Infrastrukturen entwickelt werden.

Häufig sind die Informationen zu dem Wasserstand am Bezugspegel, ab dem von einer Betroffenheit auszugehen ist, bereits bei den Betreibern der kritischen Infrastrukturen vorhanden, da diese die Abschaltung der Anlagen bei Hochwasser vorbereiten müssen. Daher ist es im Rahmen der Gefährdungsanalyse wichtig mit den Betreibern zusammenzuarbeiten, um zum
einen die zur Analyse notwendigen Standortdaten der kritischen Infrastrukturen zu erhalten und zum anderen Doppelarbeiten zu vermeiden.

Im Rahmen eines Pilotprojektes in einer rheinland-pfälzischen Gemeinde, welches seit Anfang 2015 vom Kompetenzzentrum für Hochwassermanagement und Bauvorsorge betreut wird, wurden beispielhaft die Wasserstände in Abhängigkeit vom Bezugspegel ermittelt, ab welchen die Infrastrukturannahmen der Stromversorgung betroffen sind (Tabelle 3). (Aus datenschutzrechtlichen Gründen sind die Pilotgemeinde sowie die betroffenen Transformatorstationen in der Gemeinde anonymisiert dargestellt.)

Tabelle 3: Wasserstand am Bezugspegel, ab dem eine Betroffenheit zu erwarten ist (Beispiel aus einem Pilotprojekt in Rheinland-Pfalz)

<table>
<thead>
<tr>
<th>Wasserstand am Bezugspegel [cm]</th>
<th>Transformatorstationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>Trafostation AW</td>
</tr>
<tr>
<td>800</td>
<td>Trafostation WW</td>
</tr>
<tr>
<td>825</td>
<td>Trafostation H1</td>
</tr>
<tr>
<td>850</td>
<td>Trafostation R1</td>
</tr>
<tr>
<td>950</td>
<td>Trafostation K</td>
</tr>
<tr>
<td>975</td>
<td>Trafostation N</td>
</tr>
<tr>
<td>1.000</td>
<td>Trafostation H2</td>
</tr>
<tr>
<td>1.025</td>
<td>Trafostation A</td>
</tr>
<tr>
<td>1.125</td>
<td>Trafostation S</td>
</tr>
<tr>
<td>1.175</td>
<td>Trafostation RN</td>
</tr>
<tr>
<td></td>
<td>Trafostation R2</td>
</tr>
</tbody>
</table>

Im nächsten Schritt wurden die Überflutungsflächen in einem Geographischen Informationsystem (GIS) mit den Standorten der Transformatorstationen verschnitten, sodass auf dieser Grundlage abgeschätzt werden kann, ab welchem Wasserstand am Bezugspegel, welche An-
lagen betroffen sind. Bei dieser Annahme muss jedoch berücksichtigt werden, dass keine Aussage über den Wasserstand an der betroffenen Anlage gemacht wird und daher auch nicht auf die Auswirkungen der Betroffenheit geschlossen werden kann. Erst durch die Ermittlung der Wassertiefen bei verschiedenen Hochwasserszenarien kann abgeschätzt werden, ob die Anlagen noch betriebsfähig sind.

Abbildung 3: Betroffene kritische Infrastrukturen bei verschiedenen Hochwasserszenarien in einer Pilotgemeinde am Rhein (Datengrundlage: LUWG)

Abbildung 4: Bestimmung des Wasserstands über GOK an den Standorten der kritischen Infrastrukturen in einer Pilotgemeinde am Rhein (Datengrundlage: LUWG)

Im GIS können die Wasserstände über GOK sehr genau angegeben werden, da der Abstand zwischen dem verwendeten Digitalen Geländemodell (DGM) und den modellierten Wasserspiegellagen fest definiert ist. Dies darf jedoch nicht darüber hinwegtäuschen, dass es sich bei der Modellierung der Überflutungsflächen lediglich um Annäherungen an die Realität handelt, da Modelle in der Regel zwar versuchen die Realität möglichst genau abzubilden, jedoch meist trotzdem mit Unsicherheiten behaftet sind.

2.4.3 Vulnerabilitätsanalyse

In der Vulnerabilitätsanalyse werden mithilfe der Ergebnisse aus der Gefährdungsanalyse und mit der Unterstützung der verantwortlichen Betreiber der kritischen Infrastrukturen die Auswirkungen eines Hochwassers auf die jeweiligen Anlagen abgeschätzt. Dabei sind die Faktoren Funktionsanfälligkeit und Ersetzbarkeit zu berücksichtigen.
Inwieweit ein Hochwasserereignis sich auf die Funktion der jeweiligen kritischen Infrastruktur auswirkt, ist von verschiedenen Kriterien abhängig. Diese Kriterien lassen sich grundsätzlich in die drei Gruppen „Interdependenz“, „Resistenz“ und „Resilienz“ untergliedern (Tabelle 4).

Tabelle 4: Kriterien der Funktionsanfälligkeit kritischer Infrastrukturen (in Anlehnung an BMI 2011)

<table>
<thead>
<tr>
<th>Kriterien der Funktionsanfälligkeit</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| Interdependenz | Abhängigkeit von internen Infrastrukturen
 | Abhängigkeit von externen Infrastrukturen |
| Resistenz | Widerstandsfähigkeit der verwendeten Baumaterialien
 | Bemessungslastfall der vorbeugenden Objektschutzmaßnahmen |
| Resilienz | Anpassungsfähigkeit
 | Pufferkapazität |

Das Kriterium der „Interdependenz“ bezieht sich auf die Abhängigkeitsverhältnisse der kritischen Infrastrukturen, wobei sowohl sektorenübergreifende als auch sektoreinterne Abhängigkeiten eine Rolle spielen. So sind z.B. die meisten Infrastrukturen auf eine funktionierende Stromversorgung angewiesen, während die Stromversorgung selbst so stark intern vernetzt ist, dass der Ausfall einer Versorgungskomponente sich auch auf alle nachfolgenden Komponenten auswirken kann (BMI 2011).

Unter dem Kriterium der „Resistenz“ ist die Widerstandsfähigkeit der kritischen Infrastrukturen gegenüber der Hochwassereinwirkung zu verstehen. In diesem Zusammenhang ist in erster Linie die Wasserbeständigkeit der verwendeten Baumaterialien und der gewählten Baukonstruktion entscheidend, wobei nicht nur die Wasserdrückigkeit der Baustoffe, sondern auch die Sekundäreffekte, die durch die Wassereinwirkung zu erwarten sind, bedeutsam sind. Wenn die Anlage darüber hinaus mit Objektschutzmaßnahmen ausgestattet ist, sollte der Sicherheitszuschlag, der bei der Dimensionierung der gewählten Maßnahme angesetzt wurde, bei der Beurteilung der Widerstandsfähigkeit der Anlage berücksichtigt werden (BMI 2011).

Zudem ist die Ersetzbarkeit ein entscheidender Faktor bei der Analyse der Vulnerabilität. In diesem Zusammenhang lassen sich nach BMI (2011) die folgenden drei Kriterien unterscheiden:

- **Redundanz** = Vorhandensein technischer und organisatorischer Ersatzstrukturen
- **Wiederherstellungsaufwand** = finanzieller, personeller und zeitlicher Aufwand
- **Transparenz** = Nachvollziehbarkeit der Funktionsweise

Ein wesentlicher Bestandteil der Vulnerabilitätsanalyse beinhaltet die Bestimmung der Gebiete, die von einem Ausfall der kritischen Infrastrukturen betroffen wären. Dies ist insbesondere für Gemeinden und deren Bevölkerung von entscheidender Bedeutung zur gezielten Vorbereitung auf die Hochwassersituation. Bei der Bestimmung der vom Ausfall der jeweiligen Infrastruktur betroffenen Gebäude ist stets zu beachten, dass die räumliche Abgrenzung des
Hochwassergebietes (z.B. in einer Hochwassergefahrenkarte) nicht mit dem Ausfallgebiet der Infrastrukturen gleichzusetzen ist. Dies hat zur Folge, dass sich der Ausfall einer kritischen Infrastruktur auch auf Gebäude oder Bereiche auswirken kann, die selbst nicht vom Hochwasser betroffen sind. So wird zum Beispiel beim Ausfall der Trinkwasserversorgung meist die gesamte Kommune nicht mehr mit Trinkwasser aus dem Leitungsnetz versorgt und beim Ausfall einer Transformatorstation sind häufig auch Gebäude betroffen, die selbst nicht im überschwemmten Gebiet liegen.

Abbildung 5: Von Stromausfall potenziell betroffene Gebäude am Rhein bei HQ100 (Datengrundlage: LUWG)

2.5 Mögliche Schutzmaßnahmen für kritische Infrastrukturen

In den bisherigen Pilotprojekten hat sich gezeigt, dass insbesondere die Strom-, Trinkwasser- und Telekommunikationsversorgung sowie die Abwasserentsorgung für die Bevölkerung der Kommunen von zentraler Bedeutung sind, da ohne deren Funktionsfähigkeit eine Evakuierung auch außerhalb der überschwemmten Gebiete erforderlich wäre. Darüber hinaus sind funktionsfähige Einrichtungen des Gesundheitswesens besonders im Hochwasserfall wichtig, da die Gefahr, dass Menschen zu Schaden kommen und behandelt werden müssen, stark erhöht ist. Aus diesen Gründen wurden diese Sektoren vom Kompetenzzentrum bisher schwerpunktmäßig behandelt und werden im Folgenden detaillierter betrachtet.

Um die Auswirkungen eines Hochwasserereignisses auf die verschiedenen Sektoren der kritischen Infrastrukturen abzuschätzen und daraufhin Maßnahmen zu deren Schutz zu entwickeln, werden Kenntnisse zum Aufbau und zur allgemeinen Funktionsweise der jeweiligen Infrastruktur benötigt. Daher wird in diesem Teil des Forschungsberichtes die allgemeine Funktionsweise der jeweils untersuchten Infrastrukturen erläutert, die potenziellen hochwasserbedingten Auswirkungen auf die einzelnen Komponenten der Infrastrukturen aufgezeigt sowie mögliche Schutzmaßnahmen aus Theorie und Praxis vorgeschlagen.

2.5.1 Stromversorgung

Allgemeine Funktionsweise

Das deutsche Stromversorgungsnetz setzt sich aus den folgenden vier Spannungsebenen zusammen, wobei zwischen Übertragungs- und Verteilungsnetz unterschieden wird (BMU o.J.):

- Höchstspannung (220 oder 380 kV) Übertragungsnetz
- Hochspannung (60 oder 110 kV)
- Mittelspannung (1 bis 60 kV) Verteilernetz
- Niederspannung (230 bis 200 V)

Der elektrische Strom wird innerhalb dieser Spannungsebenen mittels Wechselstrom übertragen, da sich dieser im Vergleich zum Gleichstrom verlustärmer transformieren lässt. Vom Ort der Erzeugung wird der Strom über Freileitungen oder durch im Boden verlegte Erdkabel an die Verbraucher weitergeleitet. Dabei gilt: Je höher die Spannungsebene, desto geringer sind die Verluste bei der Stromübertragung. Aus diesem Grund wird der Strom vom Kraftwerk bis zu den Verbraucherschwerpunkten über Höchstspannungsleitungen transportiert (BMU o.J.).

Während das Übertragungsnetz große Strommengen über weite Strecken transportiert, dient das Verteilernetz zur Weiterleitung des Stroms an den Verbraucher. Um den Strom auf niedrigere Spannungsniveaus zu regeln und auf diese Weise in die nachgeschaltete Spannungsebene einzuspeisen und zum Verbraucher zu bringen, sind zwischen den verschiedenen Spannungsebenen Transformatoren installiert (BMU o.J.). Diese Struktur des Stromversorgungsnetzes ist vereinfachend in Abbildung 6 dargestellt.

Abbildung 6: Allgemeine Struktur des Stromversorgungsnetzes (Guyomard 2015)

Abbildung 7: Schema des Mittel- und Niederspannungsstromnetzes (rot: Mittelspannung; schwarz: Niederspannung) (Rinnert 2015)
Auswirkungen durch Hochwasser

Im Vergleich dazu sind vom Ausfall einer Transformatorstation nur die Gebäude in der Kommune betroffen, die sich im Versorgungsradius der jeweiligen Transformatorstation befinden. Dabei ist es vom Aufbau des Niederspannungsnetzes abhängig, ob bei allen Gebäuden im Versorgungsradius der Transformatorstation der Strom ausfällt oder nicht. Wenn die Niederspannung mittels einer Stichleitung an die Kabelverteiler übertragen wird, fallen alle Kabelverteiler aus, sobald die vorgeschaltete Transformatorstation von Hochwasser betroffen ist (Abbildung 8). Eine Notversorgung über andere Transformatoren ist dabei nur möglich, wenn ein Kabelverteiler gleichzeitig mit einer anderen Station verbunden ist, die bei Hochwasser nicht betroffen ist.

Abbildung 8: Anfälligkeit des Mittelspannungsnetzes durch Hochwasser (GUYOMARD 2015)

Gleiches gilt, wenn ein Kabelverteiler in einer Stichleitung von Hochwasser betroffen ist, denn auch in diesem Fall kann der Strom nicht mehr an die nachfolgenden Kabelverteiler weitergeleitet werden, wie Abbildung 9 vereinfachend zeigt. Wenn jedoch das Niederspannungsnetz als Ring ausgebaut ist und einige Kabelverteiler bei Hochwasser überflutet werden, so können die übrigen dennoch weiterversorgt werden (Abbildung 9).
Abbildung 9: Anfälligkeit des Mittelspannungsnetzes durch Hochwasser (GUYOMARD 2015)

Allerdings ist in diesem Zusammenhang zu beachten, dass auch die nachgeschalteten Hausanschlüsse nicht vom Hochwasser betroffen sind, denn nur wenn diese weiterhin funktionsfähig sind, kann auch das jeweilige Gebäude weiterhin mit Strom versorgt werden.

Mögliche Schutzmaßnahmen

Um die Funktionsfähigkeit der Stromversorgung bei Hochwasser weiterhin aufrecht erhalten zu können, dürfen nicht nur einzelne Komponenten des Stromversorgungsnetzes baulich angepasst oder geschützt werden, sondern es muss ein ganzheitlicher Ansatz der Anpassung verfolgt werden. So hat z.B. ein intakter Kabelverteilerschrank für die Stromversorgung der Haushalte keinen Nutzen, wenn die vorgelagerte Transformatorstation nicht gegen eindringendes Wasser verteidigt werden konnte. Allerdings kann der Schutz einzelner Anlagen der Stromversorgung, auch wenn die Funktionsfähigkeit damit nicht gewährleistet wird, sowohl die Reparaturkosten reduzieren als auch die zeitnahe Wiederinbetriebnahme ermöglichen (BIRK-MANN ET AL. 2011).

2.5.2 Trinkwasserversorgung

Allgemeine Funktionsweise

Im Allgemeinen bestehen Trinkwasserversorgungssysteme aus den folgenden Komponenten (GUJER 2007):

- Wassergewinnung
- Wasseraufbereitung
- Wasserspeicherung
- Wasserverteilung

Nach der Trinkwasseraufbereitung wird das (Rein-)Wasser in einem Wasserbehälter zwischengespeichert (Abbildung 12). In Abhängigkeit vom natürlichen Gefälle werden die Wasserbehälter zur Druckhaltung im Verteilernetz als Hochbehälter ausgeführt, sodass eine Versorgung der Verbraucher ohne den Einsatz von Pumpen ermöglicht wird. Wenn dies nicht
möglicherweise erfolgt die Verteilung des Trinkwassers in der Regel mithilfe von Pumpen (Abbildung 13).

Auswirkungen durch Hochwasser

Bei einem Hochwasserereignis sind alle Komponenten der Trinkwasserversorgung, d.h. die Wassergewinnung, -aufbereitung, -speicherung und die Wasserverteilung potenziell gefährdet (BRAUBACH 2011). Jede dieser Komponenten besteht wiederum aus verschiedenen Anlagenteilen, auf die sich ein Hochwasser unterschiedlich auswirkt. Im Allgemeinen lassen sich zwei grundlegende hochwasserbedingte Auswirkungen auf das Trinkwasserversorgungssystem
unterscheiden. Zum einen können Schäden an der Anlagentechnik entstehen, die für die Bevölkerung Versorgungseingriffe zur Folge haben und zum anderen kann es zur Kontamination des Trinkwassers kommen, wodurch gesundheitliche Beeinträchtigungen in der Bevölkerung hervorgerufen werden können (Abbildung 14).

Abbildung 14: Auswirkungen auf die Komponenten der Trinkwasserversorgung bei Hochwasser

Im Fokus steht dabei jedoch vor allem die Trinkwasserbereitstellung, welche die Wassergewinnung-, -aufbereitung und -verteilung umfasst. Ohne eine ausreichende Trinkwasserbereitstellung kann die Versorgung der Verbraucher, je nach Kapazität und Füllstand der Zwischenspeicher, nicht mehr gewährleistet werden (BIRKMANN ET AL. 2013).

Bei der Trinkwasseraufbereitung können durch Hochwasser Schäden an der Aufbereitungsanlage, dem Pumpwerk und der Netzentlaststelle hervorgerufen werden. Hochwasserbedingte Schäden an der Aufbereitungsanlage sind vor allem an den elektrischen Anlagen zu erwarten und resultieren in der Regel in einer Versorgungseinschränkung der Bevölkerung, da das Rohwasser nicht mehr aufbereitet werden kann. Daher kann die Bevölkerung in diesem Fall nur so lange mit Trinkwasser aus dem öffentlichen Versorgungsnetz versorgt werden, bis das Wasser aus dem Zwischenspeicher aufgebraucht ist. Wenn die Pumpwerke der Trinkwasseraufbereitung von Hochwasser betroffen sind, können diese nicht mehr mit Strom versorgt werden, sodass diese ausfallen. Auf diese Weise wird das aufbereitete Trinkwasser nicht mehr ins Verteilernetz weitergeleitet, sodass die gesamte Wasserversorgung zusammenbricht. Im
Vergleich dazu ist das Hochwasserrisiko für die Netzleitstelle des Wasserversorgungssystems eher gering, da Steuerungsmechanismen zwischen den verschiedenen Komponenten in der Regel auch automatisiert ablaufen, ohne dass diese von der Netzleitstelle eingeleitet werden müssen. Häufig nimmt die Leitstelle also eine reine Überwachungsfunktion wahr. Daher kann die Wasserversorgung weiterhin sichergestellt werden, auch wenn die Netzleitstelle im Hochwasserfall nicht mehr betrieben werden kann (BIRKMANN ET AL. 2013). Wenn in einer zu untersuchenden Kommune jedoch eine Netzleitstelle mit Steuerungsfunktion vorhanden ist, kann bei einem Hochwasser damit gerechnet werden, dass das Trinkwasserversorgungssystem nicht mehr in gewohntem Umfang funktioniert.

Mögliche Schutzmaßnahmen

Ebenso wie bei der Stromversorgung ist es hinsichtlich der Schutzmaßnahmen zur Aufrechterhaltung der Trinkwasserversorgung wichtig, dass bei baulichen Anpassungen ein ganzheitlicher Ansatz verfolgt wird, sodass der Schutz des Gesamtsystems gewährleistet werden kann. Als Grundvoraussetzung zur Entwicklung von Schutzmaßnahmen ist die Hochwasserrisikobeurteilung für jede einzelne Komponente der Trinkwasserversorgung zu betrachten. Wenn sich
in diesem Zusammenhang herausgestellt, dass nur einzelne Komponenten bei Hochwasser potenziell betroffen sind, dann können die Maßnahmen entsprechend angepasst und so einge- grenzt werden.

2.5.3 Abwasserentsorgung

Allgemeine Funktionsweise

Abbildung 15: Schema der Mischkanalisation (DWA 2009)
Abbildung 16: Schema der Trenkanalisation (DWA 2009)

Abwasser ist nach § 55 Abs. 1 WHG so zu beseitigen, dass das Wohl der Allgemeinheit nicht beeinträchtigt wird. Daher dürfen auch die Abwasseranlagen nur nach den allgemeinen Regeln der Technik errichtet, betrieben und unterhalten werden (§ 60 Abs. 1 S. 2 WHG). Den anerkannten Stand der Technik zu Planung, Bau, Betrieb, Unterhaltung und Überprüfung von Abwasserentsorgungsanlagen definieren DIN-Normen sowie die Arbeitsblätter der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA).
Auswirkungen durch Hochwasser

Hinsichtlich der Auswirkungen eines Hochwasserereignisses auf die Abwasserentsorgung können Schäden an den verschiedenen Komponenten des Entwässerungssystems entstehen, wobei sich der Ausfall einzelner Komponenten auch auf das Gesamtsystem auswirkt. Die wichtigsten zu betrachtenden Komponenten, an denen Schäden durch Hochwasser entstehen können, sind die Kläranlage, die Pumpstationen sowie die Hausanschlüsse.

Auch an den Pumpstationen können Schäden durch Hochwasser hervorgerufen werden, wobei auch hier insbesondere die Funktionsfähigkeit der elektrischen Anlagentechnik den limitierenden Faktor darstellt. Wenn aufgrund der Hochwassereinwirkung die Anlagentechnik nicht mehr funktioniert, kann das Abwasser nicht mehr abgeführt werden und aus den Kanaldeckeln

Mögliche Schutzmaßnahmen

Auch bei der Abwasserentsorgung ist bei der Auswahl geeigneter Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit im Hochwasserfall auf die interne Abhängigkeit der einzelnen Komponenten des gesamten Entwässerungssystems zu achten. So kann z.B. beim Ausfall der Pumpstationen auch der Betrieb der Kläranlage nicht mehr gewährleistet werden, da die Bakterien für die biologische Reinigung nach einiger Zeit ohne Abwassereinleitung absterben. Demnach könnte die Kläranlage erst wieder hochgefahren werden, wenn die Pumpen wieder funktionsfähig sind. Demgegenüber zielen die Maßnahmen zur Schadensminderung an den Abwasseranlagen insbesondere auch auf eine Verkürzung der Dauer bis zur Wiederinbetriebnahme nach einem Hochwasserereignis ab.

Im Anhang dieses Forschungsberichtes werden für die Komponenten der Abwasserentsorgung mögliche Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit sowie Maßnahmen zur Schadensminderung bei Hochwasser in tabellarischer Form aufgelistet (vgl. Tabelle A 5 und Tabelle A 6).

2.5.4 Telekommunikationsversorgung

Allgemeine Funktionsweise

Das Telekommunikationsnetz der Deutschen Telekom AG setzt sich wie auch die Strom- und Trinkwasserversorgung aus verschiedenen Komponenten zusammen, die voneinander abhängig sind. Dazu zählen die Mobilfunkmasten, die Betriebsstellen, die Kabelverzweigerkästen und die Hausanschlüsse. Zur Aufrechterhaltung des Mobilfunkes sind an erster Stelle die
Funkmasten zu nennen, diesen nachgeschaltet sind die jeweiligen Betriebsstellen (Abbildung 19). Bezüglich der Festnetztelefonie und der Internetnutzung fungieren diese Einrichtungen als zentrale Umschaltstellen, denen die Kabelverzweigerkästen (KVz) als weiterführende Komponente folgen (Abbildung 20). Die Kabelverzweigerkästen der Telekom versorgen in der Regel Haushalte im Umkreis von ca. 500 m mit Internet und Festnetz, in weniger dicht besiedelten Randgebieten sogar bis zu 2.000 m. Dabei sind die Versorgungsgebiete pro Kasten unabhängig voneinander, sodass es beim Ausfall eines Kabelverzweigerkastens nicht zu einer Kettenreaktion kommt, wie es häufig bei der Stromversorgung der Fall ist (STIEBITZ 2014).

Auswirkungen durch Hochwasser

Da die Telekommunikationssysteme im Hochwasserfall wichtige Informationswege zur Warnung und Information der Bevölkerung darstellen, ist es wichtig, bereits im Voraus zu prüfen, inwiefern die Telekommunikationsversorgung bei Hochwasser sichergestellt werden kann. Daher ist es von besonderer Bedeutung zu eruieren, wo sich wichtige Komponenten der Telekommunikation befinden und ob diese bei bestimmten Pegelständen gefährdet sind. In diesem Zusammenhang sollte jedoch auch berücksichtigt werden, dass die Telekommunikation eine stromabhängige Infrastruktur ist. Daher ist in erster Linie die Betroffenheit der Stromversorgung im Hochwasserfall zu prüfen.

In Folge eines Hochwassers können Schäden an allen Komponenten der Telekommunikationsversorgung entstehen. Sind Mobilfunkmaste betroffen und müssen außer Betrieb genommen werden, so hat dies Auswirkungen auf die Verfügbarkeit des Mobilfunkempfangs in den versorgten Gebieten. Wenn im Vergleich dazu Betriebsstellen ausfallen oder aufgrund der Gefährdung vom Netz genommen werden müssen, sind sowohl der Mobilfunk als auch die Internet- und Festnetzverfügbarkeit im jeweiligen Versorgungsgebiet nicht mehr gewährleistet. Kann die Funktion der Betriebsstelle im Hochwasserfall aufrecht gehalten werden, so ist für

Mögliche Schutzmaßnahmen

Im Vergleich zur Strom- und Trinkwasserversorgung sowie der Abwasserentsorgung sind die Komponenten der Telekommunikationsversorgung intern weniger stark miteinander vernetzt. Die sensibelsten Anlagen der Telekommunikationsversorgung stellen die Betriebsstellen dar, da deren Beeinträchtigung einen flächendeckenden Ausfall der Telekommunikation im gesamten Versorgungsgebiet nach sich ziehen kann. Daher sollten die Schutzmaßnahmen für die Telekommunikation in erster Linie auf die Betriebsstellen ausgerichtet werden. Da es sich bei diesen meist um einfache Gebäude mit spezieller technischer Gebäudeausrüstung handelt, greifen in Abhängigkeit der Randbedingungen die Strategien der Bauvorsorge (vgl. DWA 2014).

Dabei ist jedoch auch zu beachten, dass die Hausanschlüsse, die durch den jeweiligen Kabelverzweigerkasten versorgt werden, bei Hochwasser nicht betroffen sind. Wenn diese überflutet werden, kann eine Versorgung des Gebäudes nicht gewährleistet werden, auch wenn der vorgelagerte Kasten noch funktionsfähig ist.

Im Anhang dieses Berichtes werden mögliche Schutzmaßnahmen zur Aufrechterhaltung der Funktionsfähigkeit der Komponenten des Telekommunikationsnetzes sowie Möglichkeiten zur Schadensminderung in tabellarischer Form aufgezeigt (vgl. Tabelle A 7 und Tabelle A 8). Dabei werden die Betriebsstellen, die Kabelverzweigerkästen sowie die Hausanschlüsse als Komponenten berücksichtigt, da diese zur Sicherstellung der Internet- und Festnetzverfügbarkeit erforderlich sind.
2.5.5 Gesundheitsversorgung

Allgemeine Funktionsweise

Die folgenden Ausführungen basieren auf einer Fallstudie in Zusammenarbeit mit einem Krankenhaus in Rheinland-Pfalz. Konkrete Angaben zu diesem Krankenhaus können aus Datenschutzgründen nur anonymisiert dargestellt werden.

In Deutschland werden die Verwaltungsorganisationen der Gesundheitsversorgung anhand der unterhaltenden Trägerschaften unterschieden. Man unterscheidet drei Hauptgruppen, welche im Folgenden weiter ausgeführt werden (STATISTISCHES BUNDESAMT 2014):

- Private Krankenhäuser (34,8%)
- Freigemeinnützige Krankenhäuser (35,4%)
- Öffentliche Krankenhäuser (29,9%)

Bei der Gruppe der öffentlich geführten Krankenhäuser wird zusätzlich angegeben, in welcher Rechtsform diese betrieben werden (STATISTISCHES BUNDESAMT 2014):

- Rechtlich unselbstständig (17,8%)
- Rechtlich selbstständig, z.B. Zweckverbände (23,0%)
- In privatrechtlicher Form, z.B. GmbH (59,2%)

Die Verwaltungsformen haben maßgeblichen Einfluss auf die Unternehmensstrategie. Sie beeinflussen mögliche Subventionierungen und Investitionsprogramme auf Basis des Krankenhausfinanzierungsgesetzes (KHG) und regeln die Refinanzierung der erwirtschafteten Gewinne. Daraus entstehen unterschiedliche Handlungsinteressen der medizinischen Institutionen, welche aber weiterhin den erteilten Versorgungsauftrag erfüllen müssen (GKV o.J.).

Auswirkungen durch Hochwasser

Abbildung 22: Komponenten des Gesundheitswesens (Riegel et al. 2007)

Dabei nimmt die Krankenhaustechnik innerhalb der Technischen Gebäudeausrüstung (TGA) eine Sonderstellung ein. Sie verlangt besondere Anforderungen an die verschiedenen Verteilungs- und Verwendungsstrukturen. Der Ausfall von nur einem System kann zum Ausfall des gesamten Krankenhauses führen. Wichtig ist daher, die Anlagen so zu planen, dass sie auch im Hochwasserfall geschützt sind. Aus diesem Grund sind Verantwortliche und Planer angehalten, explizit Überlegungen anzustellen, wie diese Anlagen auch im Hochwasserfall geschützt werden können. Im Folgenden sind verschiedene Elemente der TGA aufgelistet, die im Gesundheitssector von Bedeutung sind:

<table>
<thead>
<tr>
<th>KRITIS Gesundheit</th>
<th>Hersteller von Arzneimitteln und med. Produkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedergelassene Ärzte</td>
<td></td>
</tr>
<tr>
<td>Med. Versorgungszentren (MVZ)</td>
<td></td>
</tr>
<tr>
<td>Labore</td>
<td></td>
</tr>
<tr>
<td>Transportdienste</td>
<td></td>
</tr>
<tr>
<td>Apotheken (öffentl./klinisch)</td>
<td></td>
</tr>
<tr>
<td>Pflegedienste</td>
<td></td>
</tr>
<tr>
<td>Belagspflege</td>
<td></td>
</tr>
<tr>
<td>Sanitätsweisen</td>
<td></td>
</tr>
<tr>
<td>[Rettungswesen (Eigene KRITIS)]</td>
<td></td>
</tr>
<tr>
<td>Krankenhäuser</td>
<td></td>
</tr>
<tr>
<td>(gesetzliche) Krankenkassen</td>
<td></td>
</tr>
</tbody>
</table>

VDI 2006. Aus diesen Gründen sind Verantwortliche und Planer angehalten, explizit Überlegungen anzustellen, wie diese Anlagen auch im Hochwasserfall geschützt werden können. Im Folgenden sind verschiedene Elemente der TGA aufgelistet, die im Gesundheitssector von Bedeutung sind:
Stromversorgung, Notstrom

Im Zuge der Gefährdungsanalyse sollte der Standort der Notstromanlage so gewählt werden, dass im Falle von Naturkatastrophen oder technischer Havarie ein ungefährdeter Betrieb gewährleistet werden kann, die Versorgung mit den nötigen Betriebsmitteln aber immer noch leicht möglich ist.

Heizungsanlage

Ein Krankenhaus stellt besonders hohe Anforderungen an das Raumklima. Die verschiedenen medizinischen Fachstationen benötigen teilweise sehr unterschiedliche Temperaturen in den Arbeitsräumen und Patientenzimmern.

Bei der Wahl des Heizungssystems für die jeweilige Gesundheitseinrichtung sollte der Aspekt der Hochwasservorsorge mit einbezogen werden. Sind für den Betrieb große Pufferspeicher für die Kraftstoffbevorratung von Nöten stellen diese potenziell auftriebsgefährdete Objekte dar und müssen ggf. aufwendig verankert werden. Hinzu kommt, dass der Kontakt des Betriebsmittels mit Wasser grundsätzlich zu vermeiden ist, da entweder Schadstoffverschmutzungen (z.B. Heizöl, Diesel, etc.) oder die komplette Unbrauchbarkeit (z.B. Holzpellets) die Folge sind.

Als weiterer wichtiger Aspekt der Heizungsanlagen ist die Versorgung mit warmem Wasser anzuführen. Für die Gewährleistung von Hygiene und Sauberkeit ist die Versorgung mit heißem Wasser zu jeder Zeit erforderlich. Mit Ausfall der Heizung entfällt somit meist auch gleichzeitig die Warmwasserversorgung (VDI 2007).

Lüftungssystem

med. Druckluft/ Sauerstoff

- Medizinische Großgeräte

Mögliche Schutzmaßnahmen

In den Untersuchungen innerhalb der rheinland-pfälzischen Fallstudie wurde deutlich, dass die Evakuierungsplanung von besonderem Interesse ist, weshalb diese näher erläutert wird.

Die allgemeine Evakuierungsplanung sieht vor, dass die zuständigen öffentlichen Behörden ein Minimum an Festlegungen für den jeweilig gesamten Zuständigkeitsbereich treffen. Dazu gehören (ISIM 2002):

- Ermittlung der Transportmittel (Kapazität an öffentlichen und privat verfügbaren Transportmitteln) mit besonderer Priorität bei Rettungswagen und Krankentransportfahrzeugen
- Alarmierung und Informierung der Bevölkerung
- Erfassung und Koordinierung aller Einheiten und Mittel des Katastrophenschutzes zur Versorgung und Betreuung
- Medizinische Versorgung (niedergelassene Ärzte und Apotheken)
- Festlegung von Unterbringungskapazitäten
- Identifikation besonders hilfsbedürftiger Personen
Maßnahmen der Verkehrslenkung und Erstellung polizeilich abgestimmter Verkehrslenkungspläne

Schutz des Evakuierungsgebiets durch Polizeikräfte

In dieser Empfehlung wird davon ausgegangen, dass bei rechtzeitiger Benachrichtigung 60 % der Patienten, welche nicht direkt stationär betreut werden müssen, entlassen werden können, die restlichen 40% aber teils liegend, teils sitzend, evakuiert werden müssen (ISIM 2002). Um die Auswirkungen einer Evakuierung so gering wie möglich zu halten, sind die aufnehmenden Krankenhäuser in möglichst geringer Entfernung zu wählen. Damit werden die negativen Auswirkungen auf Patienten auf ein Minimum begrenzt. Sobald die Einschätzung zur Evakuierungsnotwendigkeit seitens der Behörden besteht, sind die Verantwortlichen der Krankenhaussträger zu informieren und somit ein Aufnahmestopp sowie die Einstellung des Krankenhausbetriebes zu erwirken.

Gliederung der Evakuierungsplanung nach SCHÖNHERR (2015)

Beschreibung des Objekts
- Übersichtslagepläne (Fluchtwegen, Notausgänge, Zufahrtswege etc.)
- Feuerwehrpläne nach DIN 14095
- Luftbilder zur Koordinierung von Sammelplätzen und Fluchtwegen
- Kartenmaterial mit bezugspegelspezifischen Überschwemmungsflächen

Vorbereitung der Patienten auf den Stationen
- Festlegung der Transportpriorität
- Feststellung des gesundheitlichen Zustandes und der Transportfähigkeit
- Krankenakten und Registerkarten mit persönlichen Angaben zu den Patienten sollten beim Patienten bereitgestellt werden, um später eine Weiterbehandlung im aufnehmenden Krankenhaus zu ermöglichen

Transport zur Sammelstelle
- Einteilung der Patienten in Prioritätsgruppen nach Mobilität (nach AUSTRIAN STANDARDS INSTITUTE 2012)
 - gehfähige Patienten
 - zu transportierende Patienten (evtl. ohne medizinische Betreuung)
 - betreuungsbedürftige Patienten (Intensivstation, frisch Operierte)
- Transport gemäß gewählter Transportwege
- Weitergabe des Patienten mit Angabe des Zielkrankenhauses

Abtransport zu aufnehmenden Krankenhäusern/Sammelstellen
- Auswahl geeigneter Rettungskorridore nach den technischen Regeln für Arbeitsstätten ASR A2.3 (BMAS 2007)
- Dokumentation der evakuierten Patienten mit Angabe des Zielortes

Die Analyse der Evakuierungsplanung macht deutlich, wie komplex strukturiert dieses Thema ist. Um im Notfall schnell reagieren zu können, ist eine präventive Planung der einzelnen Handlungsschritte von Nöten, die alle oben genannten Aspekte berücksichtigt.
2.6 Weiterer Forschungsbedarf

Da die kritischen Infrastrukturen in neun verschiedene Sektoren untergliedert werden und jeder Sektor für sich bereits einen komplexen Aufbau aufweist, stellt die sektorenübergreifende Betrachtung der kritischen Infrastrukturen generell eine Herausforderung dar. Dies liegt vor allem in der Tatsache begründet, dass die Sektoren sowohl intern als auch sektorenübergreifend stark miteinander verknüpft sind, sodass der Ausfall eines Sektors sich häufig auch auf andere Sektoren auswirkt.

Darüber hinaus besteht weiterer Forschungsbedarf im Hinblick auf die Berücksichtigung des Hochwasserrisikos für die kritischen Infrastrukturen in der Bauleitplanung. Hinsichtlich der Errichtung und Erweiterung baulicher Anlagen bestehen nach § 78 Abs. 1 Nr. 2 WHG bereits Restriktionen im Bereich festgesetzter und vorläufig gesicherter Überschwemmungsgebiete. Allerdings gibt es für die potenziellen Überflutungsgebiete eines seltenen Hochwassereignisses (Hochwasserrisikogebiete) keinerlei Restriktionen für die Bauleitplanung. Da sich jedoch seltene Ereignisse aufgrund des Klimawandels zukünftig häufen werden, wäre es sinnvoll zu untersuchen, welche Möglichkeiten bestehen, Restriktionen für diese Risikogebiete in der Bauleitplanung zu erlassen, ohne die Planungshoheit der Gemeinden unverhältnismäßig einzuschränken.

Zudem stellt sich infolge der Untersuchungen des Kompetenzzentrums die Frage, ob und in welchem Maße die Bevölkerung über das potenzielle Hochwasserrisiko für die kritischen Infrastrukturen informiert werden sollte. Auf kommunaler Ebene wurde die Bevölkerung in den bisherigen Pilotprojekten stets mit einbezogen, was durchaus als positiv zu bewerten ist, da sich die Bevölkerung so auch in Eigenvorsorge besser auf die möglichen Auswirkungen eines Hochwassers vorbereiten kann. Aus diesem Grund ergibt sich der Forschungsbedarf hinsichtlich der Möglichkeiten und Grenzen, die wesentlichen Anlagen verschiedener kritischer Infrastrukturen in die Hochwasserrisikokarten aufzunehmen und potenzielle Probleme, die infolge dieser Veröffentlichungen entstehen könnten, aufzuzeigen und öffentlich zu diskutieren.
3 Hochwasserrisikomanagement für kleine und mittlere Unternehmen (KMU)

AUTOREN: MICHAEL EIDEN, PROF. DR. ROBERT JÜPNER
3.1 Aktueller Wissensstand

Die Arbeit des Kompetenzzentrums ist darauf gerichtet, die bisherigen Instrumente und Konzepte des betrieblichen Hochwasserrisikomanagements gezielt weiter zu entwickeln. Anhand von Fallstudien verschiedener KMUs wurden systematische Untersuchungen durchgeführt, die zu allgemeinen Empfehlungen zur Hochwasservorsorge kleiner und mittlerer Unternehmen im Rahmen betrieblicher Notfallkonzepte zusammengefasst wurden.

3.2 Arbeiten des Kompetenzzentrums

Anhand mehrerer Experteninterviews mit Vertretern der Industrie- und Handelskammer (IHK), der Versicherungswirtschaft (R + V Versicherung) sowie der Stadtentwässerungsbetriebe Köln konnte ein Einblick in den Umgang von Betrieben mit Hochwasserrisiken gewonnen werden.

Im Nachgang wurde für die beiden Unternehmen eine Risikoanalyse, eine Vulnerabilitätsanalyse sowie Maßnahmenempfehlungen erarbeitet und den Unternehmen zur Verfügung gestellt. Dabei wurde sich methodisch an der Vorgehensweise des VBG-Fachwissen „Zwischenfall, Notfall, Katastrophe - Leitfaden für die Sicherheits- und Notfallorganisation“ (BGI 5097) orientiert. Aus Datenschutzgründen sind die Fallbeispiele nachfolgend anonymisiert dargestellt.
3.3 Klassifizierung von KMUs

1. Geographische Lage
2. Hochwasserrisiko
3. Größe
4. Bauliche Anlagen
5. Gefahr von Sekundärschäden
6. Wirtschaftszweig

Abbildung 23 zeigt Aspekte, die bei den einzelnen Kriterien eine Rolle spielen. Durch die Kenntnis dieser Aspekte wird die spätere Erstellung eines Notfallkonzeptes vereinfacht, da sich trotz individueller Betrachtung des Unternehmens Schwerpunkte ableiten lassen, auf die besonders geachtet werden muss.
Abbildung 23: Unterteilungsmöglichkeiten von KMUs (KELLER 2015)
3.4 Betriebliche Hochwasser-Notfallkonzepte

3.4.1 Besonderheiten von KMUs hinsichtlich der Hochwassergefährdung

Die relevanten Besonderheiten von KMUs lassen sich grundsätzlich in die für Betriebe allgemeingültigen und in die für KMUs spezifischen Merkmale differenzieren. Als Ausgangspunkt werden die für Betriebe allgemeingültigen Merkmale gewählt. Anschließend erfolgt die Ableitung der Faktoren, die kleine und mittlere Unternehmen hinsichtlich des Hochwasserschutzes von Großunternehmen unterscheiden.

Das betriebliche Hochwasserrisikomanagement wird durch eine Vielzahl von charakteristischen Merkmalen repräsentiert. Im Folgenden werden die maßgeblichen Faktoren, die das betriebliche Hochwasserrisikomanagement von dem privaten unterscheidet, erläutert.

Individualität

Bei der Erstellung eines betrieblichen Hochwasser-Notfallkonzepts bedarf jedes Unternehmen einer individuellen und detaillierten Betrachtung. Gewerbliche Anlagen unterscheiden sich demzufolge grundsätzlich in den baulichen Anlagen; manche Unternehmen benötigen zusätzliche Verkehrsfläche und Transporteinrichtungen, andere Lagerflächen oder Parkplätze. Die erforderliche individuelle Betrachtung von Betrieben spiegelt sich auch innerhalb der Versicherungseinstufung wieder.

Großunternehmen können durch die häufig angewandte Systembauweise an unterschiedlichen Standorten profitieren und Konzepte auf andere Niederlassungen übertragen. Eine Anpassung an die Standortfaktoren ist allerdings zwingend erforderlich.

Gefahr von Sekundärschäden

Umgang mit Gefahrstoffen

Unter dem Begriff „Gefahrstoffe“ werden Stoffe und Erzeugnisse definiert, die für den Menschen und die Umwelt eine Gefährdung darstellen können. Der zuvor im Rahmen der Sekundärschäden erwähnte Umgang mit Gefahrstoffen stellt eine weitere Besonderheit der betrieblichen Hochwassergefährdung dar. Zwar können Gefahrstoffe auch in Wohngebäuden vorkommen, beispielsweise in Form von Heizöl, jedoch nicht in dem Ausmaß wie in gewerblichen

Gefahr der Betriebsunterbrechung

Hohes Schadenspotenzial

Besonderheiten von KMUs gegenüber Großunternehmen

In Abhängigkeit der jeweiligen Unternehmensstruktur können sich Hochwasserereignisse als existenzgefährdend für Unternehmen und in erster Linie für KMUs auswirken. Der Grad der Existenzgefährdung wird im Wesentlichen vom Schadenspotenzial und den vorhandenen Ressourcen sowie Rücklagen bestimmt. KMUs sind aufgrund der oben beschriebenen fehlenden Kapazitäten risikoanfälliger als Großunternehmen. Da KMUs meist auf ein oder wenige Produkte bzw. Dienstleistungen spezialisiert sind und einen geringen Diversifikationsgrad aufzei-

3.4.2 Schutzziele von KMUs

Bei der Umsetzung der Schutzmaßnahmen ist zusätzlich zum Schutzziel nach entsprechendem Bemessungswasserstand noch ein Sicherheitszuschlag zu berücksichtigen (GDV 2007).

Im Allgemeinen erfolgt die Bestimmung der Schutzziele von betrieblichen Hochwasser-Notfallkonzepten unter der Berücksichtigung folgender Grundsätze (SIHK 2012):

- Schutz von Mensch und Umwelt vor schädlichen Einwirkungen
- Schutz der betrieblichen Funktionen und Infrastruktur
- Vermeidung eines wirtschaftlichen Schadens für das Unternehmen
- Vermeidung nachteiliger rechtlicher Konsequenzen für den Betrieb

3.4.3 Analyse des Schutzzbedarfs

3.4.4 Organisatorische Schutzmaßnahmen

Im Rahmen der Erarbeitung eines betrieblichen Hochwasser-Notfallkonzepts bedarf es der Aufstellung einer ausgereiften und standortspezifischen Notfallplanung. Erst eine präzise Planung der Abläufe der präventiven Maßnahmen und der Notfallbewältigung sowie die Festlegung der Zuständigkeiten erlauben eine effektive Nutzung der vorhandenen Vorwarnzeit (GDV 2007).

Festlegung der Verantwortlichkeiten

Festlegung der erforderlichen Sicherungsmaßnahmen vor einem drohenden Hochwasser

Bei Betrachtung der einzelnen Gebäude und Anlagen sowie der zu erwartenden Hochwasserstände werden objektspezifisch die erforderlichen organisatorischen und baulichen Schutzmaßnahmen abgeleitet. Baulich präventive und stationäre Schutzmaßnahmen müssen rechtzeitig umgesetzt werden. Die einzelnen im Hochwasserfall einzuleitenden Schutzmaßnahmen

Abbildung 24: Der Weg zum Schutzkonzept (VBG 2011)

Schulung und Unterweisung der Mitarbeiter

Im Hochwasserfall wird die Belegschaft meistens mit einbezogen und ist für das Durchführen der Sicherungsmaßnahmen verantwortlich. Daher sollten die benannten Mitarbeiter im Umgang mit Hochwasser sensibilisiert und über die etablierten Notfallstrukturen sowie die im Ereignisfall umzusetzenden Maßnahmen geschult werden. Die Unterweisung der Mitarbeiter ist demnach in der Notfallplanung zu berücksichtigen. Übungen der Hochwasserbewältigung helfen den Mitarbeitern sich auf den Ernstfall vorzubereiten.

Hochwasserbewältigung

Im Notfallkonzept sollte außerdem der Katastrophenfall betrachtet werden. Falls der Wasserstand die getroffenen Schutzmaßnahmen übersteigt, sollte eine grobe Planung zu Katastrophenmaßnahmen vorhanden sein. In diesem Fall ist eine Evakuierung des Betriebsgeländes meist nicht zu verhindern, weshalb Maßnahmen umzusetzen sind, die sich nur auf die reine Schadensbegrenzung konzentrieren und nicht kontrolliert oder gewartet werden müssen. Ein solches Abstellszenario, welches die Produktion stoppt und eine Evakuierung des Betriebsgeländes vorsieht, kann auch mit anderen Notfallkonzepten verknüpft werden und so Synergien, z. B. mit dem Brandschutz, nutzen.

Aktualisierung und Instandhaltung der Hochwasserschutzeinrichtungen

Gleichermaßen sind auch die vorhandenen Hochwasserschutzeinrichtungen auf die Gewährung der Funktionalität zu überprüfen. Die Einrichtungselemente sind vor Beschädigungen zu schützen, eindeutig zuzuordnen und sicher zu lagern. Eine fortlauferende Kontrolle auf Schadhafzigkeit und bei Bedarf auch die Wartung der Schutzeinrichtung dient der Sicherstellung der Einsatzfähigkeit.
3.4.5 Bauliche Schutzmaßnahmen

Hochwasserschutzstrategien der Bauvorsorge

<table>
<thead>
<tr>
<th>Ausweichen</th>
<th>Widerstehen</th>
<th>Anpassen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Bauen außerhalb des ÜSG
- Verzicht auf Unterkellerung
- Aufständer des Gebäudes bzw. Gebäudeteile

Verhindern des Wassereintritts durch bauliche Maßnahmen, u.a.:
- Abdichtung der Gebäudehülle
- Rückstausicherung
- Barieresysteme

Hochwasserangepasste Gebäudefestigkeit und planmäßiges Fluten des Gebäudes:
- Wasserbeständige Baustoffe
- Schutz TGA-Installationen
- Schutz des Inventars

Abbildung 25: Hochwasserschutzstrategien der Bauvorsorge

3.4.6 Versicherungsrechtliche Schutzmaßnahmen

3.5 Erfahrungen aus den Fallstudien

Die Untersuchung der Unternehmen zeigt eine unterschiedliche Herangehensweise an das Thema Hochwasser auf. Da das Hauptaugenmerk der Forschungen des Kompetenzzentrums auf einer Entwicklung von allgemeinen Handlungsempfehlungen liegt, werden die untersuchten Fallstudien im Folgenden nur kurz, und aus datenschutzrechtlichen Gründen anonymisiert, beschrieben. Wesentliche Erkenntnisse aus den Untersuchungen sind dabei in Kapitel 3.6 eingeflossen.

3.6 Checkliste zur Entwicklung eines Notfallkonzeptes für Unternehmen

Auf Basis der gewonnenen Erkenntnisse aus den Fallstudien wurde eine Checkliste entwickelt, welche KMUs bei der Erarbeitung eines Notfallplans als Orientierungshilfe dienen soll. Hierzu wurde eine bereits bestehende Checkliste der IHK zur Erarbeitung eines Notfallkonzepts für von Hochwasser betroffenen Betriebe (DIHK 2014) analysiert, bewertet und weiterentwickelt.

Die Checkliste der IHK richtet sich grundlegend an alle Unternehmensarten und umfasst 41 Fragen, die nach dem Zeitpunkt der durchzuführenden Maßnahmen wie folgt aufgegliedert sind:

- Teil A: Vor dem Hochwasser
- Teil B: Das Hochwasser kommt / Direkt vor dem Hochwasser
- Teil C: Während des Hochwassers
- Teil D: Nach dem Hochwasser

Da dieser Aufbau der Checkliste der logischen Reihenfolge der erforderlichen Maßnahmen entspricht, wird der Aufbau weiterhin beibehalten. Angesichts der für alle Unternehmensarten allgemeingültigen Fragen, decken sich die Inhalte der Checkliste oftmals nicht unmittelbar mit den spezifischen Bedürfnissen und Bedingungen eines KMU. Demnach gilt es, die Inhalte der

Teil 1: Vor dem Hochwasser

Teil 2: Unmittelbar vor Ereignisbeginn

Ist das betriebliche Hochwasser-Notfallkonzept umfassend erarbeitet und sind die Maßnahmen vor einem Hochwasser detailliert festgelegt worden, müssen bei einem herannahenden Hochwasserereignis die zuvor definierten Vorsorgemaßnahmen überprüft und umgesetzt werden. In jedem Fall sollten bei einem unmittelbar bevorstehenden Hochwasserereignis kontinuierlich die aktuelle Wetterlage, Wasserstände und Hochwasservorhersagen verfolgt werden. Sie bilden die Basis für die Festlegung der durchzuführenden Maßnahmen.

Teil 3: Während des Hochwassers

Während des Hochwassers sollte vor allem die Funktionalität der Vorsorgemaßnahmen überprüft werden. Im Idealfall ist der Betrieb den Vorsorgemaßnahmen entsprechend vor Hochwasser gesichert und die noch einzuleitenden Maßnahmen gemäß der Krisenmanagementplanung koordiniert.

Im Katastrophenfall wird häufig improvisiert. Die Erstellung eines Handlungsrahmens für den Katastrophenfall kann hier Abhilfe schaffen. Die Fallstudien haben gezeigt, dass ein Abstellszenario mit geplanter Evakuierung des Betriebsgeländes ein adäquates Mittel darstellt, um so die Schäden zu minimieren und nach dem Hochwasser die Produktion schneller wieder aufzunehmen.

Im Hochwasserfall sollte zudem mit den externen Einsatzkräften zusammengearbeitet werden. So können Maßnahmen im öffentlichen und privaten Bereich besser koordiniert werden und Unternehmen von Synergien bei der Hochwasserbewältigung profitieren.

Teil 4: Nach dem Hochwasser

Der Hauptaspekt der Maßnahmen, die nach einem Hochwasser ausgeführt werden sollten, bildet die Schadensdokumentation und -meldung. Mit einer detaillierten Dokumentation können Missstände des bestehenden Notfallkonzeptes identifiziert und beseitigt werden, umso besser auf das nächste Ereignis vorbereitet zu sein. Eine Beseitigung der Schäden und Ver-
schmutzungen sollte schnellstmöglich umgesetzt werden, um die Produktion wieder aufzunehmen. Dabei kann es erforderlich werden Kunden oder Zulieferer über die zeitliche Verzögerung zu informieren.

3.7 Weiterer Forschungsbedarf

Für eine auf das jeweilige Unternehmen angepasste Schutzstrategie bedarf es einer individuellen Risikoanalyse. Hierauf ergibt sich, dass ein betriebliches Hochwasser-Notfallkonzept auf die spezifischen Bedürfnisse des Unternehmens zugeschnitten werden muss. Im Vergleich zum häuslichen Hochwasserschutz ist es angesichts der Vielfalt der nutzungs- und standortspezifischen Gefährdungen nicht sinnvoll, ein allgemeingültiges Muster für die Erstellung betrieblicher Schutzkonzepte aufzustellen. Weiterer Forschungsbedarf liegt daher in einer systematischen Ausarbeitung spezifischer Handlungsempfehlungen für KMUs, welches die Besonderheiten einzelner Betriebe berücksichtigt. So können auf einzelne Unternehmen personalisierte Handlungsempfehlungen gegeben werden, die alle nötigen Informationen enthalten und solche, die auf das Unternehmen nicht zutreffen, weglassen.
4 Hochwasser-Notfallkonzepte für die kommunale Ebene

AUTOREN: CORINNA GALL, PROF. DR. ROBERT JÜPNER, DR. HARTWIG VIETING-HOFF
4.1 Aktueller Wissensstand und Arbeiten des Kompetenzzentrums

Ergänzend dazu wurde ein weiteres Pilotvorhaben zur Entwicklung eines kommunalen Hochwasser-Notfallkonzeptes Anfang 2014 in einer Gemeinde am Rhein, die hinter einer Hochwasserschutzanlage gelegen ist, initiiert. Im Vergleich zum Hochwasser-Notfallkonzept für die Gemeinde an der Mosel wurden die inhaltlichen Schwerpunkte geringfügig modifiziert, sodass insbesondere die Risikoanalyse für kritische Infrastrukturen im Vordergrund stand. In diesem Zusammenhang wurde auch die Vorgehensweise der Risikoanalyse auf die Erfordernisse vor Ort angepasst.

4.2 Was sind kommunale Hochwasser-Notfallkonzepte?

Durch die Vorgaben der HWRM-RL sowie die Pflicht der Kommunen zur Daseinsvorsorge ergibt sich für die kommunale Ebene das Erfordernis, dem Schutz kritischer Infrastrukturen auch vor seltenen Hochwasserereignissen gerecht zu werden. Um mit dieser Aufgabe verantwortungsvoll umzugehen, bietet sich die Möglichkeit kommunale Hochwasser-Notfallkonzepte zu erstellen. Doch wie lassen sich diese in den Kontext bereits bestehender Konzepte zum Hochwasserrisikomanagement auf kommunaler Ebene einordnen? Ein Hochwasser-Notfallkonzept wird auf kommunaler Ebene grundsätzlich in Ergänzung zum Alarm- und Einsatzplan aufgestellt sowie als Maßnahme im Hochwasserrisikomanagementplan (HWRM-Plan) aufgeführt.

Die HWRM-Pläne werden gemäß Artikel 7 der HWRM-RL für die Flussgebietseinheiten erstellt und enthalten Ziele und Maßnahmen zum Hochwasserrisikomanagement, welche insbesondere in einer Verringerung der hochwasserbedingten nachteiligen Auswirkungen auf die Schutzgüter menschliche Gesundheit, Umwelt, Kulturerbe und wirtschaftliche Tätigkeiten resultieren sollen. Dabei wird ein Teil der Maßnahmen auch auf kommunaler Ebene umgesetzt, sodass die Hochwasser-Notfallkonzepte als Bestandteil des HWRM-Plans aufgenommen werden können, da diese wesentlich zur Verringerung des Hochwasserrisikos vor Ort betragen.

Darüber hinaus stellen die Kommunen bundesweit im Rahmen ihrer Aufgaben Alarm- und Einsatzpläne für Hochwasser auf, um den Schutz von Menschen, Sachwerten sowie der Umwelt durch eine systematische und effektive Vorsorge und Gefahrenabwehr sicherzustellen. Dazu enthalten die Alarm- und Einsatzpläne eine Auflistung aller erforderlichen Maßnahmen,
die in Abhängigkeit von den steigenden Wasserständen am Bezugspegel von den öffentlichen Aufgabeträgern durchzuführen sind (ISM 2007). Häufig sind diese Pläne jedoch nicht bis zum Erreichen eines seltenen Hochwassereignisses aufgestellt und enden, wenn der Bemessungswasserstand erreicht wurde und die zuständige Katastrophenschutzbehörde die Einsatzeleitung übernimmt.

Auch wenn Extremhochwasser nur sehr selten auftreten, verursachen sie dennoch pro Ereignis die größten Schäden, sodass trotz der geringen Eintrittswahrscheinlichkeit ein hohes Schadensrisiko besteht (SEIFERT 2012a). Nur das Bewusstsein über das bestehende Hochwasserrisiko und die Kenntnis über die katastrophalen Auswirkungen, kann der Bevölkerung helfen, sich auf ein solches Extremereignis vorzubereiten und effektiv darauf zu reagieren.

Aus diesem Grund werden in einem kommunalen Hochwasser-Notfallkonzept die potenziellen negativen Auswirkungen eines Hochwassers in Abhängigkeit vom Wasserstand am jeweiligen Bezugspegel bis hin zu einem Extremhochwasser umfassend dargestellt. In diesem Zusammenhang werden u.a. die Anzahl der betroffenen Gebäude und Personen sowie die Versorgungssicherheit der kritischen Infrastrukturen (z.B. Energie-, Trinkwasser-, Telekommunikationsversorgung, Abwasserentsorgung, Verkehr, usw.) bei verschiedenen Hochwasserszenarien näher beleuchtet.

Auf diese Weise zielt die Aufstellung eines Hochwasser-Notfallkonzeptes darauf ab, die Bevölkerung sowie die Kommune über die möglichen negativen Auswirkungen eines Hochwassers im Detail zu informieren, damit diese sich effektiv darauf vorbereiten können. Durch die Konfrontation mit diesen Informationen, sollen die Motivation zur Eigenvorsorge gegen Hochwasser, vor allem gegen sehr seltene Ereignisse, gestärkt werden und als Folge auch die Schadenspotenziale in der Kommune reduziert werden. Grundsätzlich ist dabei zwischen Vorsorgemaßnahmen der Kommune und der einzelnen Bürgerinnen und Bürger zu unterscheiden.

4.3 Welche Faktoren sind bei der Aufstellung eines kommunalen Hochwasser-Notfallkonzeptes zu berücksichtigen?

Aus den Pilotprojekten in Rheinland-Pfalz haben sich im Dialog mit den Kommunen und der Bevölkerung verschiedene inhaltliche Schwerpunkte herauskristallisiert, welche jedoch in Bezug auf deren Relevanz vor Ort zu bewerten sind. In Abbildung 26 sind die drei grundsätzlichen Themenaspekte dargestellt, die in den Hochwasser-Notfallkonzepten behandelt werden. Diese werden in den Abschnitten 4.3.1 bis 4.3.3 detaillierter erläutert.
Dabei ergeben sich vor allem Unterschiede in der inhaltlichen Ausgestaltung des Hochwasser-Notfallkonzeptes je nachdem, ob eine technische Hochwasserschutzanlage in der Kommune vorhanden ist oder nicht. Diese Unterschiede werden in Abschnitt 4.4 näher beleuchtet.

4.3.1 Analyse der Hochwassersituation

Der zentrale Aspekt zur Analyse der Hochwassersituation in der Kommune ist die Hochwasserrisikoanalyse. Dabei wird der Begriff „Hochwasserrisiko“ gemäß Art. 2 HWRM-RL definiert als:

„Kombination der Wahrscheinlichkeit des Eintritts eines Hochwasserereignisses und der hochwasserbedingten potenziellen nachteiligen Folgen auf die menschliche Gesundheit, die Umwelt, das Kulturerbe und wirtschaftliche Tätigkeiten“.

Bei der Erstellung der Hochwasser-Notfallkonzepte wird sowohl für die Gebäude als auch für die kritischen Infrastrukturen in der Kommune eine Risikoanalyse auf der Grundlage verschiedener Hochwasserszenarien durchgeführt, welche in der Regel die Szenarien HQ₁₀, HQ₁₀₀ und HQ_{extrem} umfassen. Die dazu benötigten Daten sind im Wesentlichen den Hochwassergeräten- und -risikokarten zur entnehmen.
Risikoanalyse für Gebäude

Mithilfe einer Hochwasserrisikoanalyse für die Gebäude in einer Kommune kann die Gefährdung durch verschiedenen Hochwasserszenarien ermittelt und darauf aufbauend die potenziellen Schäden abgeschätzt werden. Dazu wird eine GIS-gestützte Analyse durchgeführt, wobei als Grundlagendaten sowohl die Gebäude aus dem Amtlichen Liegenschaftskatasterinformationssystem (ALKIS) als auch die die Rasterdaten der Hochwassergefahrenkarten mit den Höheninformationen benötigt werden.

Die Risikoanalyse für Gebäude umfasst eine Gefährdungs- und eine Vulnerabilitätsanalyse. Bei der Gefährdungsanalyse wird zum einen die Anzahl der betroffenen Gebäude bei steigenden Wasserständen am Bezugspegel und zum anderen der mittlere Wasserstand an den betroffenen Gebäuden bestimmt, während in der Vulnerabilitätsanalyse die Auswirkungen der Hochwasserszenarien betrachtet werden. Dabei werden sowohl die potenziellen Schäden an den Gebäuden als auch die Anzahl der betroffenen Personen abgeschätzt. Aus diesen Faktoren lässt sich in der Risikoermittlung das Hochwasserrisiko für die gesamte Kommune oder auch für einzelne Gebäude beurteilen, was als Grundlage zur Auswahl geeigneter Schutzmaßnahmen genutzt werden kann (Abbildung 28).

Abbildung 28: Schema der Risikoanalyse für Gebäude (in Anlehnung an BMI 2011)

Um die bei einem definierten Hochwasserereignis betroffenen Gebäude in der Kommune zu ermitteln, werden im ersten Schritt Überschwemmungsflächen in Abhängigkeit vom Wasserstand am Bezugspegel in 25 cm-Intervallen erstellt, welche im zweiten Schritt mit den ALKIS-Daten im GIS verschnitten werden. Dadurch ist zu erkennen, ab welchem Wasserstand am Bezugspegel welche einzelnen Gebäude und auch welche Gesamtanzahl an Gebäuden beim jeweiligen Hochwasserstand betroffen sind (Abbildung 29). Auf der Grundlage dieser Information können die Eigentümer der Gebäude abschätzen, ab welchem vorhergesagten Wasserstand am Bezugspegel Objektschutzmaßnahmen am eigenen Gebäude oder die Räumung des Mobiliars eingeleitet werden sollten. Mithilfe dieser Kenntnis können die Schutzmaßnahmen für das eigene Gebäude zielführend geplant werden, sodass im Hochwasserfall keine Zeit mehr für die Planung von Maßnahmen verloren geht und diese effektiv zur Verminderung von Hochwasserschäden eingesetzt werden kann.
Abbildung 29: Betroffene Gebäude für verschiedene Hochwasserszenarien in einer Pilotregion an der Mosel (Darstellung auf Grundlage digitaler Daten des LUWG RLP)

Auch wenn diese Schadenspotenzialanalyse die potenziellen Schäden, die an den Gebäuden in der Kommune durch Hochwasser entstehen können, in etwa abbildet, fehlen dennoch wichtige Aspekte, wie z.B. das Baujahr und die Bauart der Gebäude, die zur Verringerung der

Im Rahmen der öffentlichen Hochwasservorsorge können die Kommunen mithilfe dieser Informationen abschätzen, inwieweit technische Hochwasserschutzmaßnahmen oder einzelne Objektschutzmaßnahmen an öffentlichen Gebäuden oder an öffentlichen Infrastrukturen notwendig und wirtschaftlich sind.

Zudem können auch die privaten Eigentümer aufbauend auf den Informationen aus dem Hochwasser-Notfallkonzept besser einschätzen, ob es sich lohnt, für ihr Gebäude Maßnahmen der Bauvorsorge zu realisieren. Ergänzende Informationen zu möglichen Bauvorsorgemaßnahmen am eigenen Gebäude können Privateigentümer auch auf der Homepage des Kompetenzzentrums für Hochwassermanagement und Bauvorsorge erhalten (http://www.hochwassermanagement.rlp.de/servlet/is/175640/). Dort können Privateigentümer mithilfe der Hochwasser-Gebäudecheckliste das Hochwasserrisiko für ihr eigenes Gebäude ermitteln und mögliche Bauvorsorgemaßnahmen zur Risikominderung ableiten.

Risikoanalyse für kritische Infrastrukturen

Zudem wird bei der Aufstellung eines kommunalen Hochwasser-Notfallkonzeptes eine Risikoanalyse für kritische Infrastrukturen durchgeführt, um die Versorgungssicherheit der Bevölkerung im Hochwasserfall abschätzen zu können. Auf die Vorgehensweise zur Risikoanalyse wurde bereits detailliert in Abschnitt 2.4 eingegangen, sodass an dieser Stelle darauf verzichtet wird.

4.3.2 Umgang mit kritischen Infrastrukturen

Aufbauend auf die Ergebnisse der Risikoanalyse für kritische Infrastrukturen ist es von besonderer Bedeutung, effektive und wirtschaftliche Schutzmaßnahmen festzulegen, um die Versorgung der Bevölkerung bei Hochwasser weiterhin gewährleisten zu können oder wenn dies nicht möglich ist, die Schäden an den Anlagen durch entsprechende Maßnahmen zu reduzieren. Da mögliche Maßnahmen zum Schutz einiger kritischer Infrastrukturen bereits in Abschnitt 2.5 aufgeführt wurden, wird an dieser Stelle nicht mehr näher darauf eingegangen.

4.3.3 Beteiligung der Bevölkerung

Der betroffenen Bevölkerung kommt eine große Bedeutung im Hochwasserrisikomanagement zu, da laut § 5 Abs. 2 WHG jeder selbst dafür verantwortlich ist, in zumutbarem Umfang Vorsorgemaßnahmen gegen Hochwasser zu treffen und auch während eines Hochwassers sind die Kommunen sowie die örtliche Feuerwehr nicht für alles zuständig. So ist es z.B. nicht die Aufgabe der Feuerwehr, die Keller von Privatgebäuden auszupumpen. Um Missverständnisse zu vermeiden, ist es zu empfehlen, die Zuständigkeitsbereiche und öffentlichen Dienstleistungen der Feuerwehr und der Kommune in der Bevölkerung klar zu kommunizieren.
Auch für die Umsetzung der Handlungsbereiche des Hochwasserrisikomanagements sind sowohl die Kommunen als auch die Bevölkerung verantwortlich. Dabei sind die Zuständigkeiten für die Umsetzung zwischen Bund, Bundesländern, Kommunen und den Betroffenen klar regelt (Tabelle 5).

Tabelle 5: Zuständigkeiten für die Umsetzung der Handlungsbereiche des Hochwasserrisikomanagements (Quelle: LUWG RLP 2011, LAWA 2010)

<table>
<thead>
<tr>
<th>Handlungsbereich</th>
<th>Zuständigkeit</th>
</tr>
</thead>
</table>
| Flächenvorsorge | Regionalplanerische und bauleitplanerische Maßnahmen: Planungsgemeinschaften, kommunale Gebietskörperschaften
 Festsetzung von Überschwemmungsgebieten: Wasserverwaltungsverwaltung |
| Natürlicher Wasserrückhalt | Rückhaltung auf land- und forstwirtschaftlichen Flächen und Wiedergewinnung von Überschwemmungsgebieten in Gewässerauen: Land- und Forstwirtschaft, Naturschutz, kommunale Gebietskörperschaften, Wasserwirtschaft |
| Technischer Hochwasserschutz | Bau von Stauanlagen zur Hochwasserrückhaltung, von Deichen, Dämmen, Hochwasserschutzmauern, mobilen Hochwasserschutzanlagen, Freihaltung der Hochwasserabflussquerschnitte im Siedlungsraum:
 Gewässer 1. Ordnung: Bundesland
 Gewässer 2. und 3. Ordnung: kommunale Gebietskörperschaften
 Objektschutzmaßnahmen an gefährdeten Anlagen und Anwesen: Betroffene |
| Bauvorsorge | Hochwasserangepasstes Planen und Bauen sowie hochwasserangepasstes Lagern wassergefährdender Stoffe: Betroffene |
| Risikovorsorge | Finanzielle Absicherung durch Versicherungen: Betroffene |
| Informationsvorsorge | Vorhersagen und Informationen zur Hochwasserlage: Hochwassermeldedienst Bundesland
 Warnung aller Betroffenen bzw. Alarm- und Einsatzplan Hochwasser: kommunale Gebietskörperschaften |
| Verhaltensvorsorge | Aufklärung der betroffenen Bevölkerung über Hochwasserrisiken: Bundesland und kommunale Gebietskörperschaften
 Vorbereitungsmaßnahmen auf den Hochwasserfall: Betroffene |
Aufgaben der Kommunen bei Hochwasser

Erst wenn ein zuvor festgelegter Bemessungswasserstand am jeweiligen Bezugspiegel unterschritten wurde oder die Einsatzkräfte vor Ort nicht zur Bewältigung des Hochwasserereignisses ausreichen, rufen die Landkreise und kreisfreien Städte als Untere Katastrophenbehörde den Katastrophendiensfall aus und übernehmen die Leitung der Einsatzmaßnahmen (MUV et al. 2003). Welche Aufgaben die Unteren Katastrophenbehörden wahrnehmen, regeln die Katastrophenversicherungsstatuten der Länder (in Rheinland-Pfalz das Brand- und Katastrophenversicherungsgesetz (LBKG)). Im operativen Hochwasserschutz gehören dazu die Leitung und Koordination des Einsatzes im Fall eines Hochwasserkatastrophalarms, womit die Führung der Gemeinden und Verwaltungsgemeinschaften einhergeht sowie die Informierung der Öffentlichkeit. Um diese Aufgaben zu erfüllen, wird ein Katastrophenbehördenstab gebildet, der sich aus den Leitern der einzelnen Sachbereiche, aus Fachberatern und Verbindungspersonen zusammensetzt und vom Landrat oder einer von ihm beauftragten Person geführt wird (GRETZSCHEL 2008).

Bei der Durchführung von Maßnahmen zur Verminderung potenzieller Hochwasserrisiken auf kommunaler Ebene werden durch die Beteiligung und Information der Bevölkerung das Verständnis und die Akzeptanz dieser Maßnahmen erhöht und das Hochwasserrisikobewusstsein der Betroffenen gefördert (Seifert 2012b).

Aufgaben der Bevölkerung bei Hochwasser

Da es sich bei der Hochwasservorsorge um eine Gemeinschaftsaufgabe handelt, muss diese Aufgabe gemeinsam von der Kommune und der Bevölkerung bewältigt werden, um die Vorsorgemaßnahmen möglichst zu optimieren (Schernikau 2013). In diesem Zusammenhang ist die Bevölkerung verantwortlich für die Durchführung von Maßnahmen in den Handlungsbereichen Bauvorsorge, Risikovorsorge sowie Verhaltensvorsorge (Tabelle 5).

Der Handlungsbereich der Bauvorsorge umfasst Maßnahmen des hochwasserangepassten Planens, Bauens und Sanierens sowie der hochwasserangepassten Lagerung von umweltgefährdenden Stoffen. Diese Maßnahmen zielen darauf ab, die hochwasserbedingten Schäden an Gebäuden so weit wie möglich zu reduzieren. Für die Umsetzung sind dabei in erster Linie die Eigentümer zuständig. Allerdings stehen auch die Kommunen in der Pflicht, die Erfordernisse der Bauvorsorge bereits in die Bauleitplanung einfließen zu lassen und darüber hinaus sind die Architekten, Ingenieure und Bauherren für eine sachgerechte Durchführung der Maßnahmen verantwortlich.

Im Sinne der Hochwasservorsorge sollte die Kommune bereits vor Eintreten eines Hochwassers Informationen zu möglichen Maßnahmen in diesen drei Handlungsbereichen für die Bevölkerung bereitstellen. Dazu sollte ein Hochwasser-Notfallkonzept die Aufgaben für die Bevölkerung umfassen, die vor, während und nach einem Hochwasser durchzuführen sind. Beispielhaft sind in Abbildung 30 die Hinweise zur Verhaltensvorsorge für die Bevölkerung in Bad Münster am Stein-Ebernburg dargestellt, welche im Rahmen eines Pilotprojektes des
MULEWF vom Kompetenzzentrum für Hochwassermanagement und Bauvorsorge entwickelt wurden.

Insbesondere während eines Hochwassers sollten die Aufgaben der Kommune und der Bevölkerung klar voneinander abgegrenzt sein, weshalb es sich empfiehlt, die örtlichen Alarm- und Einsatzpläne zusätzlich zur Erstellung der Verhaltenshinweise für die Bevölkerung zu veröffentlichen. Auf diese Weise werden die Bürgerinnen und Bürger über die Aufgaben der Gemeinde und der örtlichen Feuerwehr bei einem Hochwasser informiert.

Daher werden bei der Aufstellung eines kommunalen Hochwasser-Notfallkonzeptes Helferlisten erhoben, in die sich Personen eintragen, die im Bedarfsfall entweder manuell oder durch die Bereitstellung von Unterstellmöglichkeiten oder Anhängern Hilfe leisten können. Diese werden in die Verwaltung der Kommune hinterlegt, sodass sich alle Helfer dort eintragen können. Um die Helfer möglichst effektiv zur Unterstützung der Hilfsbedürftigen einsetzen zu können, sollten sich auch hilfsbedürftige Menschen in die Helferlisten eintragen. Auf diese Weise können die Helfer besser koordiniert werden. Zur Gewährleistung der Funktionstüchtigkeit dieses Systems sollten die Helferlisten jährlich aktualisiert werden. Darüber hinaus ist es erforderlich, dass sich die freiwilligen Helfer auf die Hochwassersituation vorbereiten und regelmäßige Schulungen durchgeführt werden.

Abbildung 30: Hinweise zur Verhaltensvorsorge für die Bevölkerung in Bad Münster am Stein-Ebernburg
4.4 Hochwasser-Notfallkonzepte für Kommunen mit überörtlichem Hochwasserschutz (technische Hochwasserschutzanlagen)

Im Abschnitt 4.3 wird in erster Linie auf die Faktoren eingegangen, die bei der Erstellung eines Hochwasser-Notfallkonzeptes für eine Kommune ohne technische Hochwasserschutzanlage zu berücksichtigen sind. Bei einer Kommune mit technischen Hochwasserschutz ergeben sich jedoch andere Randbedingungen, sodass auch im Hochwasser-Notfallkonzept davon abweichende Aspekte näher betrachtet werden müssen.

Demnach sind bei einem kommunalen Hochwasser-Notfallkonzept für Kommunen hinter Hochwasserschutzanlagen zusätzliche Hochwasserszenarien zu betrachten. Dazu zählen zum einen die Bemessungsgrenze und zum anderen die Verteidigungsgrenze. Wenn diese Grenzen überschritten werden, kann entsprechend der in Abschnitt 4.3 erläuterten Vorgehensweise ein Hochwasser-Notfallkonzept aufgestellt werden.

In einem Pilotprojekt des MULEWF in Rheinland-Pfalz wurde bereits ein kommunales Hochwasser-Notfallkonzept für eine Kommune hinter einer Hochwasserschutzanlage aufgestellt, bei welchem allerdings die Hochwasserrisikoanalyse für die kritischen Infrastrukturen im Vordergrund stand. Dazu wurden die für die Versorgung der Bevölkerung wesentlichen kritischen Infrastrukturen (Energie-, Trinkwasser-, Telekommunikationsversorgung sowie Abwasserent- sorgung) hinsichtlich der Auswirkungen bei der Gefahreneinwirkung eines Extremhochwassers untersucht, um abzuschätzen, ob deren Funktion weiterhin gewährleistet werden kann. Dies diente als Entscheidungsgrundlage für die Entscheidung einer möglichen Evakuierung. Als Ergebnis dieser Studie ist in der Kommune mit einem flächendeckenden Stromausfall bei
einem Extremhochwasser zu rechnen, sodass auch alle anderen untersuchten kritischen Infrastrukturen in ihrer Funktion beeinträchtigt werden. Daher wurde für die Kommune der Alarm- und Einsatzplan bis hin zu einem Extremhochwasser überarbeitet und ein aktualisierter Evakuierungsplan erstellt.

Hinsichtlich der Maßnahmen zum Umgang mit kritischen Infrastrukturen ist bei einer Kommune hinter einer Hochwasserschutzanlage vor allem darauf zu achten, dass die Wirtschaftlichkeit der Maßnahmen gewährleistet ist. Da Extremhochwassereignisse äußerst selten auftreten, ist in der Regel eher auf Maßnahmen zur Schadensminderung zu setzen. Gleiches gilt für die Handlungsempfehlungen zur Verhaltensvorsorge für die Bevölkerung. Auch diese müssen an das Hochwasserrisiko angepasst sein.

Insbesondere für Kommunen mit technischen Hochwasserschutzanlagen trägt ein kommunales Hochwasser-Notfallkonzept wesentlich zur Steigerung des Gefahrenbewusstseins bei und ist im Hinblick auf die in Zukunft verstärkt auftretenden Extremereignisse ein zentraler Bestandteil der Hochwasservorsorge und für die örtlichen Katastrophenschutz-Kräfte unerlässlich.

4.5 Weiterer Forschungsbedarf

Im Rahmen der Arbeiten des Kompetenzzentrums wurde erstmals ein kommunales Hochwasser-Notfallkonzept für eine rheinland-pfälzische Pilotgemeinde entwickelt. Durch die Beteiligung der Bevölkerung konnten die wesentlichen Defizite hinsichtlich der Bereitstellung von Informationen zum Thema Hochwasser in der Kommune herausgearbeitet und als Inhalte in das Notfallkonzept aufgenommen werden. Das kommunale Hochwasser-Notfallkonzept dient dazu, alle Betroffenen über das bestehende Hochwasserrisiko zu informieren und bestmöglich auf die Auswirkungen eines Hochwassers bis hin zu einem extremen Ereignis vorzubereiten. Aus diesen Gründen stellt ein kommunales Hochwasser-Notfallkonzept ein geeignetes Instrument dar, um das Hochwasserrisiko in einer Kommune durch zielführende Maßnahmen der Hochwasservorsorge zu verringern.

Da in Zukunft die Schadenspotenziale in Risikogebieten weiter zunehmen werden, ist es von großer Bedeutung, die potenziell betroffene Bevölkerung gegenüber Extremereignissen zu sensibilisieren. Dabei sollte vor allem in Kommunen mit technischen Hochwasserschutzanlagen das Risikobewusstsein gestärkt werden. Es ist zu empfehlen, dies weiterhin mithilfe der Aufstellung von Hochwasser-Notfallkonzepten zu fördern, denn dadurch wird die Zusammenarbeit zwischen den Kommunen, den Betreibern der kritischen Infrastrukturen und der Bevölkerung verbessert, welche für ein effektives Hochwasserrisikomanagement unerlässlich ist.

Vor diesem Hintergrund stellt sich auch die Frage, ob es sinnvoller wäre, die Ergebnisse aus dem kommunalen Hochwasser-Notfallkonzept in bereits bestehende Schutzkonzepte auf kommunaler Ebene, wie z.B. den Alarm- und Einsatzplan, zu integrieren, anstatt ein neues Konzept zu etablieren. Dies sollte im Rahmen der Pilotprojekte in Rheinland-Pfalz gemeinsam mit den Verantwortlichen in den Kommunen, den Betreibern der kritischen Infrastrukturen sowie der Bevölkerung diskutiert werden.
5 Hochwasser-Gebäudecheckliste für Privatpersonen

AUTOREN: MICHAEL EIDEN, PROF. DR. ROBERT JÜPNER
5.1 Einführung

Aus diesem Grund empfiehlt sich die Entwicklung eines Konzepts, welches jedem potenziell Betroffenen die Möglichkeit bietet, mit wenig Aufwand und ohne spezifisches Wissen, eine Übersicht über mögliche Gefahren und das damit einhergehende Schadenspotenzial zu erhalten. Die Intention hinter diesem Konzept besteht darin, Bürger für kommende Hochwasserereignisse zu sensibilisieren und passende Schutzstrategien für die betroffenen Gebäude und Grundstücke zu entwickeln oder, falls bereits vorhanden, diese zu verbessern.

Um dies zu verwirklichen, wurde am Kompetenzzentrum für Hochwassermanagement und Bauvorsorge eine Gebäudecheckliste für im Hochwasserfall potenziell gefährdete Haushalte entwickelt.

5.2 Vergleichsprojekt DWA/HKC-Hochwasserpass

Der Grundgedanke des Hochwasserpasses ähnelt dem der Hochwasser-Gebäudecheckliste und zielt in erster Linie auf die Sensibilisierung und Informierung der Bevölkerung ab. Auch der Hochwasserpass gibt abschließend an einen Fragebogen mit ca. 50 detaillierten Fragen zu der Immobilie selbst und der TGA eine Kurzbewertung zur Gefährdung des Gebäudes ab. Mit dieser Selbstauskunft wird der Ist-Zustand des Gebäudes bewertet, wodurch Risiken und Schadenspotenziale aufgedeckt und Schäden so präventiv verhindert werden können (www.hochwasser-pass.de).

Der vom Ingenieurbüro Osterhammel GmbH entwickelte Pass arbeitet mit dem vom Gesamtverband der Deutschen Versicherungswirtschaft (GDV) entwickelten Zonierungssystem ZÜRS. Dieses System gibt für nahezu jedes Gebäude in Deutschland eine von 4 Gefährdungsklassen an:

- Klasse 4: statistisch häufiger als 1-mal in 10 Jahren ein Hochwasser
- Klasse 3: statistisch 1-mal in 10 bis 50 Jahren ein Hochwasser
- Klasse 2: statistisch 1-mal in 50 bis 200 Jahren ein Hochwasser
- Klasse 1: statistisch seltener als 1-mal alle 200 Jahre ein Hochwasser

Der Erwerb des Hochwasserpasses erfolgt in vier Schritten:

1. Sensibilisierung / Selbstauskunft: In diesem ersten Schritt wird der Benutzer auf der Internetseite des HKC mit Fachwissen versorgt, um den Fragebogen sachgemäß auszufüllen zu können. Der Fragebogen ist ein kostenloser Service des HKC und die Beantwortung erfolgt online auf der Homepage.

2. Im zweiten Schritt erhält der Hausbesitzer eine standardisierte Kurzbewertung seiner Angaben aus dem Fragebogen. Bis zu diesem Punkt geht der kostenlose Service der Initiative.

3. Auf der Homepage wird die Möglichkeit angeboten, speziell geschulte Sachkundige zu kontaktieren, welche auf Honorarbasis hinzugezogen werden können. Diese überprüfen die Plausibilität der Angaben und geben in einem Vor-Ort-Gespräch detailtiertere, individuell angepasste Informationen und Beratungen. Sie sind verpflichtet die erbrachte Beratung in einem Dienstleistungs- und Beratungsprotokoll zu dokumentieren.

5.3 Arbeiten des Kompetenzzentrums

- Geführtes Ausfüllen der Fragebogen
- Besichtigung der gefährdeten Räume
- Fragen und Anregungen seitens der Testpersonen

5.4 Fragenkomplexe der Hochwasser-Gebäudecheckliste

Um den Fragebogen übersichtlich zu halten, ist er in vier übergeordnete Themengebiete unterteilt:

1. "Allgemeine Angaben zur Gefährdung"

Im ersten Abschnitt des Fragebogens geht es in erster Linie um die örtliche Lage des Objektes und seine bauliche Struktur. Darüber hinaus werden Informationen zu vergangenen Hochwasserereignissen und möglichen vorhandenen technischen Hochwasserschutzanlagen abgefragt.

2. "Nutzung und Schäden"

Die Fragen im zweiten Abschnitt zielen auf die Art der Nutzung der Immobilie ab. Des Weiteren finden sich hier Fragen über die entstandenen Schadensbilder vergangener Hochwasserereignisse und die anschließend eingeleiteten Maßnahmen. Es soll abschließend noch eingeschätzt werden, welche Schadensbilder nach den getroffenen Maßnahmen noch zu erwarten sind und welche ausgeschlossen werden können.

3. "Zusatzfragen bei gewerblicher Nutzung"

In diesem Fragenkomplex geht es ausschließlich um Objekte mit gewerblicher Nutzung. Dabei zielt die Checkliste vor allem auf Gebäude mit einer Mischnutzung ab, in denen ein Kleingewerbe betrieben wird. Da bei Kleingewerben das Schadenspotenzial sehr hoch liegen kann, werden auch hier vergangene Hochwasserereignisse thematisiert und die Frage, inwiefern der Betrieb Einbußen durch den Ausfall der Nutzung oder durch materielle Schäden hatte.

4. "Technische Gebäudeausrüstung"

Im Gegensatz zum Hochwasserpass des HKC ist der Themenschwerpunkt hauptsächlich auf die Gefährdung durch Überschwemmungereignisse aus Flüssen gelegt. Um eine computer-basierte Auswertung durchführen zu können sind die Antwortmöglichkeiten als Werteingabe oder Multiple-Choice-Abfragen gehalten. Teilweise sind ergänzende Angaben möglich.
Die Fragen sind in der vorgegebenen Reihenfolge zu beantworten, da das Frageprinzip teilweise auf dem If-Then-Else-Prinzip aufbaut (vgl. Abbildung 31).

1.5. Besitzt Ihr Gebäude einen Keller?
IF - Abfrage

Ja
1.5.1. In welcher Form wird der Keller genutzt?
- Lager
- Hobbyraum
- Waschräume
- Badezimmer
- Arbeitszimmer
- Wohnung
- Freizeiträume mit kostspieliger Ausstattung
- keine Nutzung
1.5.2. Ist das Inventar mobil?
- Mobil
- Stationär

Nein

ELSE - Alternative

Abbildung 31: Erklärung “If-Then-Else” Abfrage (nach FAUST 2014)

Um die Beantwortung für die interessierte Bevölkerung so einfach wie möglich zu gestalten, werden zu den einzelnen Fragen Hilfen und Zusatzinformationen gegeben. Diese wurden auch mit eigens erstellten Abbildungen ergänzt, um die Anschaulichkeit zu verbessern. Abbildung 32 und Abbildung 33 sind Beispiele für die erstellten Abbildungen.

Abbildung 32: Schematische Darstellung der Anordnung von Steckdosen in überflutungsgefährdeten Räumen
Überprüfung der Hochwasser-Gebäudecheckliste in der Praxis

Um die Hochwassergebäude-Checkliste auf Funktionalität und Plausibilität zu überprüfen, wurden zwei Praxistests an einer Kommune an der Nahe und einer Kommune an der Mosel durchgeführt. Unterstützt wurden die Mitarbeiter des Kompetenzzentrums bei den Tests an der Nahe von einem Studenten der TU Kaiserslautern und an der Mosel von einem Studenten der Hochschule Kaiserslautern.

Der Praxistest an der Mosel wurde mit besonderem Hinblick auf die sich im Entwicklungsprozess befindliche Online-Auswertung durchgeführt, um eine Verifizierung der entwickelten Auswertung zu erreichen. Insgesamt wurden elf Objekte mit einer heterogenen Nutzungsverteilung untersucht, um so ein möglichst breites Spektrum an unterschiedlichen Gebäudetypen zu testen.

Als Ergebnis dieser beiden Tests wurden die einzelnen Fragen der Checkliste überarbeitet und teilweise ergänzt, um die Beantwortung der Fragen ohne Hinzuziehen eines Fachmanns mit den bereitgestellten Informationen zu erleichtern. Dabei hat sich die Verwendung von Farben als optisches Bewertungssystem als zweckmäßig herausgestellt.
5.6 Die Online-Version der Hochwasser-Gebäudecheckliste

Angelehnt an die Ergebnisse der Praxistests wurde sich für die Bewertung des Fragebogens mittels einer Farbskala entschieden. Auf dieser Farbskala aufbauend entstand die Grundstruktur des Bewertungsschemas mit den drei Hauptgefährdungsstufen. Um eine einfache Visualisierung zu ermöglichen, wurde die Verknüpfung der Gefährdungsstufen mit dem Farbmuster einer Ampel gewählt. Durch diese aus dem Alltag bekannte Struktur ist auf den ersten Blick erkennbar, wie stark das Gebäude gefährdet ist.

Um jedoch individueller auf die einzelnen Gebäude eingehen zu können wurden der "Ampel" noch zwei weitere Zwischenkategorien hinzugefügt (Abbildung 34). Durch die schlussendlich fünf verschiedenen Kategorien ergibt sich ein Bewertungsschema, welches flexibler auf verschiedene Gebäude angewendet werden kann als ein System mit nur drei Kategorien. So ist es möglich, Maßnahmen spezifischer und gezielter Gebäuden zuzuordnen, welche helfen können das Schadenspotenzial nachhaltig zu senken.

Die abschließende Beurteilung und die damit einhergehende Gefahrenanalyse und Abschätzung des Schadenspotenzials ergibt sich aus den Gefährdungsstufen der verschiedenen Kategorien.

Da die Fragen der Checkliste eine unterschiedliche Wichtigkeit und Relevanz aufweisen, muss folgerichtig auch in der Auswertung die Gewichtung verteilt werden. Nur so kann eine adäquate Beurteilung der Immobilie erfolgen. Für die endgültige Bewertung bedarf es auch einer Gewichtung der vier Themenkomplexe. Auch diese weisen eine unterschiedliche Relevanz auf und gehen differenziert in das Endergebnis ein und werden mit den Zahlenwerten wie folgt multipliziert:

- Allgemeine Angaben zur Gefährdung: 2-fach
- Nutzung und Schäden: 2-fach
- Zusatzfragen bei gewerblicher Nutzung: 1-fach
- Technische Gebäudeausrüstung: 3-fach

Anknüpfend an die Gewichtung der Themenkomplexe wird aus dem erzeugten Mittelwert das Endergebnis und somit die Gefährdungsbeurteilung und Ermittlung des Schadenspotenzials für das Objekt auf der Farbskala für den Nutzer der Checkliste leicht verständlich visualisiert.

Als Konsequenz aus der Bewertung werden einzelne Maßnahmen empfohlen oder im Falle einer mittleren oder hohen Gefährdung die Empfehlung gegeben, sich an einen vereidigten Sachverständigen zu wenden, der die Immobilie detailliert bewerten und Maßnahmen planen kann.
5.7 Weiterer Forschungsbedarf

Im Prozess zur Erstellung der Hochwasser-Gebäudecheckliste erfolgt nun die Publikation des mit dem Bewertungssystem ausgestatteten Fragebogens auf der Homepage des Kompetenzzentrums für Hochwassermanagement und Bauvorsorge, sodass interessierte Bürger die Checkliste online ausfüllen und unmittelbar eine Beurteilung für ihr Objekt erhalten können. Es hat sich gezeigt, dass von Seiten der Bevölkerung das Interesse an der Selbstinformation zum Thema Hochwasser stetig zunimmt.

Um die Checkliste weiter zu optimieren und den Bürgern die Bearbeitung so einfach wie möglich zu machen, gezielte Antworten auf die Fragen zu geben, sind weitere Praxistests sinnvoll, in denen dann die Online-Version ohne direkte Erklärung vor Ort getestet werden sollte. Nur so kann untersucht werden, ob eine Beantwortung ohne Fachmann leicht möglich ist und ggf. einzelne Fragen überarbeitet werden müssen.

Ein weiterer Ansatzpunkt ist der Umgang des Betroffenen mit der Auswertung der Checkliste. Aus den Abschlussgesprächen mit den Anwohnern der Praxistests geht hervor, dass das Interesse an Kontaktdaten zu Fachbetrieben für die verschiedenen Themenschwerpunkte besteht (z.B. Statiker, Elektrotechniker, etc.). Deshalb sollen im nächsten Schritt Informationen und Kontaktdaten zu Fachbetrieben aus der Umgebung implementiert werden.

Im Zuge der Untersuchungen wurde außerdem der Bedarf von weiteren Beispielen sichtbar. Um die Anschaulichkeit zu verbessern, können synthetische Musterhäuser entwickelt werden, an denen konkrete Bauvorsorgemaßnahmen gezeigt werden. Auch die Berücksichtigung verschiedener Baustile und Bauweisen wäre sinnvoll, um einer Person ohne Fachwissen an einem Haus, welches ähnlich wie sein eigenes aufgebaut ist, Möglichkeiten der Vorsorge zu verdeutlichen. In diesem Zusammenhang kann außerdem eine Handlungsanleitung für Planer erarbeitet werden, die planenden Ingenieuren und Architekten Hilfestellung bei der hochwasserangepassten Bauausführung liefern soll.
6 Fazit und Ausblick

Autoren: Corinna Gall, Michael Eiden, Prof. Dr. Robert Jüpner, Dr. Hartwig Vietinghoff

Dabei wurden Untersuchungen hinsichtlich betrieblichen Hochwasser-Notfallkonzepten durchgeführt. An zwei Praxisbeispielen wurden dazu vom Kompetenzzentrum Untersuchungen durchgeführt, die eine Risikoanalyse, eine Vulnerabilitätsanalyse sowie Maßnahmenempfehlungen beinhalteten. Aufbauend auf den gewonnenen Erfahrung wurde eine Checkliste des DIHK überarbeitet und erweitert, um Unternehmen ein Werkzeug an die Hand zu geben, ihre eigene
Hochwasservorsorge zu verbessern. Die überarbeitete Checkliste ist im Anhang dieses Berichtes angeführt.

Als weiteren Handlungsbedarf muss diese Checkliste an weiteren Unternehmen getestet werden, um ihre Umsetzbarkeit bei verschiedenen Unternehmensgrößen und Branchen zu testen.

Für Kommunen eignen sich aus Sicht des Kompetenzzentrums die kommunalen Hochwasser-Notfallkonzepte zur Vorbereitung auf potenzielle Hochwassergefahren, da sie alle Betroffenen über das bestehende Hochwasserrisiko bis hin zu einem Extremereignis informieren und die Auswirkungen eines Hochwassers vor Ort aufzeigen. Auf der Grundlage dieser Informationen kann sowohl die Kommune als auch die Bevölkerung Vorsorgemaßnahmen zum Schutz vor Hochwasser treffen, welche dazu beitragen, die Schadenspotenziale zu reduzieren.

Da in Zukunft die Schadenspotenziale in Risikogebieten weiter zunehmen werden, ist es von sehr großer Bedeutung, die potenziell betroffene Bevölkerung gegenüber von Extremereignissen zu sensibilisieren. Dies gilt insbesondere für Kommunen hinter Hochwasserschutzanlagen. Es ist zu empfehlen, mithilfe von Hochwasser-Notfallkonzepten das Risikobewusstsein auf kommunaler Ebene zu stärken, denn dadurch wird auch die Zusammenarbeit zwischen den Kommunen, den Betreibern der kritischen Infrastrukturen und der Bevölkerung verbessert, welche für ein effektives Hochwasserrisikomanagement unerlässlich ist.

7.1 Mögliche Schutzmaßnahmen für verschiedene Sektoren der kritischen Infrastrukturen gegen Hochwasser

Im Folgenden werden die möglichen Schutzmaßnahmen für die vom Kompetenzzentrum für Hochwassermanagement und Bauvorsorge untersuchten Sektoren der kritischen Infrastrukturen in tabellarischer Form aufgeführt. Zu denen vom Kompetenzzentrum in bisherigen Untersuchungen betrachteten kritischen Infrastrukturen zählen:

- die Stromversorgung (vgl. Tabelle A 1 und Tabelle A 2),
- die Trinkwasserversorgung (vgl. Tabelle A 3 und Tabelle A 4),
- die Abwasserentsorgung (vgl. Tabelle A 5 und Tabelle A 6),
- die Telekommunikation (vgl. Tabelle A 7 und Tabelle A 8) sowie
- die Gesundheitsversorgung (vgl. Tabelle A 9 und Tabelle A 10).

Für jede dieser Infrastrukturen werden vom Kompetenzzentrum Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit bei Hochwasser und Maßnahmen zur Schadensminderung im Hochwasserfall vorgeschlagen.

Tabelle A 1: Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit des Mittelspannungsstromnetzes bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten des Stromversorgungsnetzes</th>
<th>Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
</table>
| Transformator | Verlegung | Keine oder seltenere Betroffenheit im Hochwasserfall | - Nur innerhalb des Lastschwerpunktes möglich
- Sehr hoher Kosten- und Tiefbauaufwand | |
| | Höherelegung | Keine oder seltenere Betroffenheit im Hochwasserfall | - Einschränkung der Zugänglichkeit
- Bei Hochwasser Abschaltung aus der Ferne notwendig
- Überflutung, wenn Bemessungswasserstand überschritten | |
| Abschirmung durch mobile Elemente | | | |
| Abschottung durch stationäre Maßnahmen | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
Komponenten des Stromversorgungsnetzes | Maßnahmen zur Schadensminderung
---|---
Transformator | Abschottung durch mobile Elemente
- Eindringen des Wassers wird verhindert
- Abschaltung der Anlagen erforderlich, da bei Betrieb Belüftung nötig | **Nutzen**
- Verringerung des Verschmutzungsgrads
- Vermeidung von Kurzschlüssen
- Auftriebssicherheit der Anlagen als limitierender Faktor
- Sehr hoher Kosten- und Zeitaufwand
- Großer logistischer Aufwand
- Überflutung, wenn Bemessungswasserstand überschritten | **Einschränkung**
- Auftriebssicherheit der Anlagen als limitierender Faktor
- Sehr hoher Kosten- und Zeitaufwand
- Großer logistischer Aufwand
- Überflutung, wenn Bemessungswasserstand überschritten

Abdichtung der Lüftungsgitter z.B. durch Sandsäcke | Verringerung des Verschmutzungsgrads
- Vermeidung von Kurzschlüssen
- Vermeidung von Kurzschlüssen
- In Eigenverantwortung der Stromversorger zu erstellen | **Nutzer**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet | **Einschränkung**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet

Flutung mit Trinkwasser | Verringerung des Verschmutzungsgrads
- Vermeidung von Kurzschlüssen
- Vermeidung von Kurzschlüssen
- In Eigenverantwortung der Stromversorger zu erstellen | **Nutzer**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet | **Einschränkung**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet

Abschaltpunkt in Abhängigkeit vom Wasserstand am Bezugspegel | Vermeidung von Kurzschlüssen
- In Eigenverantwortung der Stromversorger zu erstellen | **Nutzer**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet | **Einschränkung**
- Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)
- Einsatz vor allem in begehbaren Transformatorenstationen
- Kompaktstationen weniger geeignet

Tabelle A 3: Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit der Trinkwasserversorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten des Wasserversorgungsnetzes</th>
<th>Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit</th>
<th>Nutzen</th>
<th>Einschränkungen</th>
</tr>
</thead>
</table>
| Gewinnung | Hogerlegung der elektrischen Anlagentechnik | Keine oder seltenere Betroffenheit im Hochwasserfall | - Evtl. Einschränkung der Zugänglichkeit
- Überflutung, wenn Bemessungswasserstand überschritten |
| Abschottung des Brunenschachts durch stationäre Maßnahmen | Keine Betroffenheit im Hochwasserfall (Bei sachgerechter War tung) | - Wasserdruck unbedingt zu berücksichtigen (Gefahr des Aufschwimmens oder Grundbruch)
- Installation der Beh and Entlüftung in ausreichender Höhe |
<p>| Notstromversorgung der Anlagentechnik | Aufrechterhaltung der Trinkwassergewinnung auch bei Ausfall der Stromversorgung | - Nur möglich, wenn die elektrische Anlagentechnik nicht überflutet wird |</p>
<table>
<thead>
<tr>
<th>Komponenten des Wasserversorgungsnetzes</th>
<th>Maßnahmen zur Schadensminderung</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewinnung</td>
<td>Abdichtung der Wassereindringpfade z.B. durch Sandsäcke</td>
<td>Verringerung des Verschmutzungsgrads</td>
<td>- Geringer Kosten- und Zeitaufwand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td>- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)</td>
</tr>
<tr>
<td></td>
<td>Flutung des Brunnen- schachts mit Trinkwasser</td>
<td>Verringerung des Verschmutzungsgrads</td>
<td>- Sowohl bei wasserdichten als auch bei wasserdurchlässigen Brunnenschächten anwendbar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermeidung von Aufschwimmen und Grundbruch</td>
<td>- Bei wasserdichten nur, wenn Auftriebs sicherheit evtl. nicht gewährleistet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abschaltplan für die elektrische Anlagen- technik in Abhängigkeit vom Wasserstand am Bezugspegel</td>
<td>Vermeidung von Kurz- schlüssen</td>
<td>- Erstellung eines Notfallplans für die Ab schaltung mit Pegelbezug notwendig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermeidung von Schäden an der Anlage</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A 4: Maßnahmen zur Schadenminderung an den Anlagen der Trinkwasserversorgung bei Hochwasser
Verringerung der Dauer bis zur Wiederinbetriebnahme

Verringerung der Dauer bis zur Wiederinbetriebnahme

- Vorwarnzeiten beachten

Aufbereitung

| Abdichtung der Wassereindringstellen | Verringerung des Verschmutzungsgrads | - Geringer Kosten- und Zeitaufwand
| Verringerung der Dauer bis zur Wiederinbetriebnahme | - Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte) |

| Abschaltplan für die elektrische Anlagentechnik in Abhängigkeit vom Wasserstand am Bezugspegel | Vermeidung von Kurzschlüssen | - Erstellung eines Notfallplans für die Abschaltung mit Pegelbezug notwendig
| Vermeidung von Schäden an der Anlage | - Vorwarnzeiten beachten |
| Verringerung der Dauer bis zur Wiederinbetriebnahme | |

Verteilung

| Rechtzeitige Abschaltung der Pumpen zur Druckregulierung und ggf. Demontage | Vermeidung Schäden durch Kurzschlüsse | - Erstellung eines Notfallplans für die Abschaltung mit Pegelbezug notwendig
| Vermeidung von Schäden an der Anlage | - Vorwarnzeiten beachten |
| Verringerung der Dauer bis zur Wiederinbetriebnahme | |

Tabelle A 5: Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit der Abwasserentsorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Abwasserentsorgung</th>
<th>Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kläranlage</td>
<td>Maßnahme</td>
</tr>
<tr>
<td>Höherlegung der elektrischen Anlagentechnik</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall</td>
</tr>
<tr>
<td>Abschottung des Klärkanlage durch stationäre Maßnahmen</td>
<td>Keine Betroffenheit im Hochwasserfall</td>
</tr>
<tr>
<td>Notstromversorgung der Analgentechnik</td>
<td>Aufrechterhaltung der Abwasserentsorgung auch bei Ausfall der Stromversorgung</td>
</tr>
<tr>
<td>Pumpstationen</td>
<td>Maßnahme</td>
</tr>
<tr>
<td>Druckwasserdichter Ausbau der elektrischen Anlagentechnik</td>
<td>Keine Betroffenheit im Hochwasserfall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
</table>
| Keine oder seltenere Betroffenheit im Hochwasserfall | - Evtl. Einschränkung der Zugänglichkeit
| - Überflutung, wenn Bemessungswasserstand überschritten |
| Keine Betroffenheit im Hochwasserfall | - Wasserdruck unbe dingt zu berücksichti gen (Gefahr des Aufschwimmens oder Grundbruch)
| - Installation der Be und Entlüftung in ausreichender Höhe |
| Aufrechterhaltung der Abwasserentsorgung auch bei Ausfall der Stromversorgung | - Nur möglich, wenn die elektrische Anlagentechnik nicht überflutet wird |
Hausanschlüsse

<table>
<thead>
<tr>
<th>Maßnahme</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückstauklappen oder Abwasserhebeanlagen</td>
<td>Verhindert das Eindringen von Rückstauwasser aus der Kanalisationsr-</td>
<td>- In Eigenverantwortung der Eigentümer</td>
</tr>
<tr>
<td></td>
<td>- Regelmäßige Wartung erforderlich</td>
<td>- Im Bestand erhöhter Aufwand</td>
</tr>
</tbody>
</table>

Tabelle A 6: Maßnahmen zur Schadensminderung an den Komponenten der Abwasserentsorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Abwasserentsorgung</th>
<th>Maßnahmen zur Schadensminderung</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kläranlage</td>
<td>Abdichtung der Wassereindringpfade z.B. durch Sandsäcke</td>
<td>Verringerung des Verschmutzungsgrads</td>
<td>- Geringer Kosten- und Zeitaufwand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td>- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte)</td>
</tr>
<tr>
<td></td>
<td>Flutung der Kläranlage mit Trinkwasser</td>
<td>Verringerung des Verschmutzungsgrads</td>
<td>- Abhängig von der Auftriebssicherheit des Gebäudes der Kläranlage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermeidung von Aufschwimmen und Grundbruch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abschaltung der elektrischen Anlagen-technik vor Wasserzutritt</td>
<td>Vermeidung von Kurzschlüssen</td>
<td>- Ermittlung von Wasserspiegel- oder Erfahrungswerte als Grundlage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermeidung von Schäden an der Anlage</td>
<td>- Vorwarnzeiten beachten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td></td>
</tr>
<tr>
<td>Pumpstation</td>
<td>Abschaltplan für die elektrische Anlagen-technik in Abhängigkeit vom Wasserstand am Bezugspegel</td>
<td>Vermeidung von Kurzschlüssen</td>
<td>- Erstellung eines Notfallplans für die Abschaltung mit Pegelbezug notwendig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermeidung von Schäden an der Anlage</td>
<td>- Vorwarnzeiten beachten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td></td>
</tr>
<tr>
<td>Hausanschlüsse</td>
<td>Provisorische Abdichtvorrichtung</td>
<td>Verringerung des Zuflusses von Rückstauwasser</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle A 7: Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit der Telekommunikationsversorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Telekommunikationsversorgung</th>
<th>Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstelle</td>
<td>Höherlegung der elektrischen Anlagentechnik im Gebäude</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall</td>
<td>- Evtl. Einschränkung der Zugänglichkeit - Überflutung, wenn Bemessungswasserstand überschritten</td>
</tr>
<tr>
<td></td>
<td>Abschottung des Gebäudes durch stationäre Maßnahmen</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall</td>
<td>- Wasserdruck unbedingt zu berücksichtigen (Gefahr des Aufschwimmens oder Grundbruch) - Nur im Neubau zu realisieren</td>
</tr>
<tr>
<td></td>
<td>Abschirmung des Gebäudes mit mobilen Elementen</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall</td>
<td>- Sehr kostenintensiv - Großer logistischer Aufwand - Voraussetzung: wasserdichter Ausbau des Kellers, Rückstausicherung, Auftriebssicherheit - Platzverhältnisse vor Ort als limitierender Faktor - Überflutung, wenn Bemessungswasserstand überschritten</td>
</tr>
<tr>
<td></td>
<td>Verteidigung des Gebäudes mit Sandsäcken</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall</td>
<td>- Großer logistischer Aufwand - Voraussetzung: wasserdichter Ausbau des Kellers, Rückstausicherung, Auftriebssicherheit - Überflutung, wenn Bemessungswasserstand überschritten</td>
</tr>
<tr>
<td>Kabelverzweiger</td>
<td>Höherlegen</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall (wenn vorgeschaltete Komponente geschützt)</td>
<td>- Evtl. Einschränkung der Zugänglichkeit - Überflutung, wenn Bemessungswasserstand überschritten</td>
</tr>
<tr>
<td>„Koblenzer Hauben“ Abdichtungsglocke für Kabelverzweiger</td>
<td>Keine Betroffenheit im Hochwasserfall (wenn vorgeschaltete Komponente geschützt)</td>
<td></td>
<td>- Nur wenn Bodenplatte wasserundurchlässig - Nicht für Multifunktionsgehäuse geeignet, da Belüftung notwendig</td>
</tr>
<tr>
<td>Hausanschlüsse</td>
<td>Höherlegen</td>
<td>Keine oder seltenere Betroffenheit im Hochwasserfall (wenn vorgeschaltete Komponente geschützt)</td>
<td>- Im Bestand aufwendig, da Kabel neu verlegt werden müssen</td>
</tr>
</tbody>
</table>
Tabelle A 8: Maßnahmen zur Schadensminderung an den Komponenten der Telekommunikationsversorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Telekommunikationsversorgung</th>
<th>Maßnahmen zur Schadensminderung</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
</table>
| Betriebsstelle | Abdichtung der Wassereindringpfade z.B. durch Sandsäcke | Verringerung des Verschmutzungsgrads | - Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte) |
| | Flutung der Betriebsstelle mit Trinkwasser | Verringerung des Verschmutzungsgrads | - Abhängig von der Auftriebs sicherheit des Gebäudes Betriebsstelle
- Mit Schäden an den technischen Anlagen ist zu rechnen |
| | Abschaltung der elektrischen Anlagentechnik vor Wasserzutritt | Vermeidung von Kurzschlüssen | - Ermittlung von Wasserspiegelwellen oder Erfahrungswerte als Grundlage
- Vorwarnzeiten beachten |
| Kabelverzweiger | Verteidigung mithilfe von Sandsäcken | Verringerung des Verschmutzungsgrads | - Geringer Kosten- und Zeitaufwand
- Maßnahme ist logistisch vorzubereiten (Ressourcen, Einsatzkräfte) |
| Hausanschlüsse | - | - | - |

Tabelle A 9: Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit der Gesundheitsversorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Gesundheitsversorgung</th>
<th>Maßnahmen zur Aufrechterhaltung der Funktionsfähigkeit</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
</table>
| Technische Gebäudeausrüstung | Höherlegung der elektrischen Anlagentechnik | Keine oder seltene Betroffenheit im Hochwasserfall | - Evtl. Einschränkung der Zugänglichkeit
- Überflutung, wenn Be messungswasserstand überschritten |
| | Abschottung der Technikzentrale durch stationäre Maßnahmen | Keine Betroffenheit im Hochwasserfall | - Wasserdruck unbedingt zu berücksichtigen (Gefahr des Auf schwimmens oder Grundbruch) |
Notstromversorgung der Anlagentechnik

Aufrechterhaltung lebenswichtiger Funktionen auch bei Ausfall der Stromversorgung

- Nur möglich, wenn die Anlagentechnik nicht überflutet wird
- Betriebsmittel müssen gesichert werden

Gebäude

Abschottung der Gebäudeöffnungen

Kein oder geringer Wassereintritt bis zum Bemessungswasserstand

- Wasserdruck beachten
- Überflutung, wenn Bemessungswasserstand überschritten

Räumung der gefährdeten Bereiche

Verringerung des Schadenspotenzials

- Lange Vorwarnung nötig
- Alle Objekte müssen mobil sein

Rückstauklappen oder Abwasserhebeanlagen

Verhindert das Eindringen von Rückstauwasser aus der Kanalisation

- Regelmäßige Wartung erforderlich

Tabelle A 10: Maßnahmen zur Schadensminderung an den Komponenten der Gesundheitsversorgung bei Hochwasser

<table>
<thead>
<tr>
<th>Komponenten der Gesundheitsversorgung</th>
<th>Maßnahmen zur Schadensminderung</th>
<th>Nutzen</th>
<th>Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Gebäudeausrüstung</td>
<td>Kontrolliertes Abschalten aller elektrischen Anlagen vor Wasserzutritt</td>
<td>Vermeidung von Kurzschlüssen
Verminderung von Schäden an der Anlage
Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td>- Vorwarnzeiten beachten</td>
</tr>
<tr>
<td>Gebäude</td>
<td>Fluten des Gebäudes mit gefiltertem Wasser und Trinkwasser</td>
<td>Verringerung des Verschmutzungsgrads
Vermeidung von Aufschwimmen und Grundbruch
Verringerung der Dauer bis zur Wiederinbetriebnahme</td>
<td>- Abhängig von der Auftriebssicherheit des Gebäudes</td>
</tr>
<tr>
<td></td>
<td>Provisorische Abdichtung der Kanalanschlüsse z.B. mit Dichtkissen</td>
<td>Verringerung des Zuflusses von Rückstauwasser</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Checkliste zur Entwicklung eines Notfallkonzeptes für Unternehmen

Im Folgenden ist die auf Basis der bestehenden Checkliste der IHK (DIHK 2014) weiterentwickelte Checkliste dargestellt. Sie umfasst insgesamt 122 Fragen in 4 Teilen:

- Teil 1: Vor dem Hochwasser
- Teil 2: Unmittelbar vor Ereigniseintritt
- Teil 3: Während des Hochwassers
- Teil 4: Nach dem Hochwasser

Sie dient als Orientierung und muss den spezifischen Bedingungen des Unternehmens angepasst werden.

<table>
<thead>
<tr>
<th>Checkliste Teil 1 - Vor dem Hochwasser</th>
<th>erledigt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Sind die allgemeinen Zuständigkeiten für den Hochwasserschutz festgelegt und kommuniziert?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.2 Sind die Aufgaben des Hochwasserschutz-Beauftragten definiert?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.3 Sind Informationen zu vergangenen Hochwassern bekannt und ggf. ausgewertet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.4 Sind die relevanten Pegel bestimmt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.5 Sind die Informationen zu den Bemessungsabflüssen bekannt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.6 Ist die Vorwarnzeit ermittelt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.7 Sind die Hochwassergefahrenkarten ausgewertet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.8 Ist ein potenzielles Versagen von technischen Hochwasserschutzanlagen berücksichtigt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.9 Ist der Informationsfluss über mögliche Gefahrenlagen gesichert?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.10 Sind Informationen zum Geländeniveau (Höhenpläne) vorhanden bzw. ist eine Geländevermessung durchgeführt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.11 Ist das spezifische Hochwasserrisiko für das Betriebsgelände ermittelt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>1.12</td>
<td>Sind die schutzrelevanten Bereiche/betroffenen Anlagen identifiziert?</td>
</tr>
<tr>
<td>1.13</td>
<td>Ist die Gefährdung durch Treibgut oder Eisgang zu berücksichtigen?</td>
</tr>
<tr>
<td>1.14</td>
<td>Sind die objektspezifischen Schutzziele festgelegt?</td>
</tr>
<tr>
<td>1.15</td>
<td>Ist ein Notfallplan mit Festlegung der erforderlichen Maßnahmen in Abhängigkeit des zu erwartenden Wasserstands erarbeitet?</td>
</tr>
<tr>
<td>1.16</td>
<td>Sind Alarmschwellen (Wasserstände) definiert?</td>
</tr>
<tr>
<td>1.17</td>
<td>Ist der Notfallplan mit den regionalen Katastrophenschutzbehörden abgestimmt?</td>
</tr>
<tr>
<td>1.18</td>
<td>Sind rechtliche Verpflichtungen geklärt? (z.B. Störfallverordnung)</td>
</tr>
<tr>
<td>1.19</td>
<td>Ist ein Klimaänderungsfaktor bzw. eine evtl. Hochwasserverschärfung berücksichtigt?</td>
</tr>
<tr>
<td>1.20</td>
<td>Sind die Verantwortlichkeiten für die Umsetzung der einzelnen Sicherungsmaßnahmen bestimmt?</td>
</tr>
<tr>
<td>1.21</td>
<td>Sind Einsatz- und Bereitschaftspläne erstellt?</td>
</tr>
<tr>
<td>1.22</td>
<td>Ist ein Verfahren zum Aktualisieren des Notfallplans festgelegt?</td>
</tr>
<tr>
<td>1.23</td>
<td>Sind sicherheitsrelevante Telefonnummern und Ansprechpartner an gut erreichbaren Stellen ausgehängt?</td>
</tr>
<tr>
<td>1.24</td>
<td>Sind alle wichtigen Unterlagen (Papierform und EDV) griffbereit?</td>
</tr>
<tr>
<td>1.25</td>
<td>Sind die Arbeitsabläufe geregelt?</td>
</tr>
<tr>
<td>1.26</td>
<td>Ist eine Krisenkommunikationsplanung vorhanden?</td>
</tr>
<tr>
<td>1.27</td>
<td>Ist eine funktionierende Kommunikation mit Feuerwehr, Behörden und Kommunen sichergestellt?</td>
</tr>
<tr>
<td>1.28</td>
<td>Sind die Maßnahmen zur Ausfall- und Wiederanlaufplanung (Abstellszenario) definiert?</td>
</tr>
<tr>
<td>1.29</td>
<td>Ist die Dokumentation im Schadensfall sichergestellt?</td>
</tr>
<tr>
<td>1.30</td>
<td>Ist eine unterbrechungsfreie Notstromversorgung gewährleistet?</td>
</tr>
<tr>
<td>1.31</td>
<td>Ist der Aufbauablauf von mobilen Schutzeinrichtungen geplant?</td>
</tr>
<tr>
<td>1.32</td>
<td>Sind die benötigten Personalressourcen (Mannstunden) kalkuliert?</td>
</tr>
<tr>
<td>1.33</td>
<td>Stehen genügend Einsatzkräfte zur Verfügung?</td>
</tr>
<tr>
<td>1.34</td>
<td>Kann im Hochwasserfall auf zusätzliche Hilfskräfte zurückgegriffen werden?</td>
</tr>
<tr>
<td>1.35</td>
<td>Sind die Einsatzkräfte geschult und unterwiesen?</td>
</tr>
<tr>
<td>1.36</td>
<td>Ist der Informationsfluss an die Mitarbeiter über ein geeignetes Verhalten im Hochwasserfall geregelt?</td>
</tr>
<tr>
<td>1.37</td>
<td>Sind ggf. Ausweicharbeitsplätze (externe Arbeitsstätten) vorhanden?</td>
</tr>
<tr>
<td>1.38</td>
<td>Ist für den Ausfall technischer Infrastruktur einrichtungen vorgesehen?</td>
</tr>
<tr>
<td>1.39</td>
<td>Sind Verträge oder Abkommen zur „Zwischenlagerung“ von Chemikalien und gefährlichen Stoffen, sowie Lagertüten und Anlagenteile abgeschlossen?</td>
</tr>
<tr>
<td>1.40</td>
<td>Sind die Transportmöglichkeiten zur Auslagerung gefährlicher Stoffe geklärt?</td>
</tr>
<tr>
<td>1.41</td>
<td>Ist die Parkposition von Aufzugsanlagen festgelegt?</td>
</tr>
<tr>
<td>1.42</td>
<td>Sind Abstellmöglichkeiten für Fahrzeuge, die aus dem gefährdeten Bereich entfernt werden, geklärt?</td>
</tr>
<tr>
<td>1.43</td>
<td>Sind regelmäßige Hochwasserschutzübungen organisiert?</td>
</tr>
<tr>
<td>1.44</td>
<td>Ist eine regelmäßige Wartung und Überprüfung der Schutzeinrichtungen sichergestellt?</td>
</tr>
<tr>
<td>1.45</td>
<td>Sind Einrichtung und Nutzung an eine mögliche Hochwassergefahr angepasst?</td>
</tr>
<tr>
<td>1.46</td>
<td>Sind die Bauwerke gegen drückendes Grundwasser bzw. Oberflächenwasser abgedichtet?</td>
</tr>
<tr>
<td>1.47</td>
<td>Sind die Maßnahmen zum Verschließen von Gebäudeöffnungen, etc. festgelegt?</td>
</tr>
<tr>
<td>1.48</td>
<td>Werden mobile Schutzeinrichtungen (Dammbalken, Sandsäcke, Pumpen) vorgehalten?</td>
</tr>
<tr>
<td>1.49</td>
<td>Sind die mobilen Schutzeinrichtungen zugeordnet und sicher gelagert?</td>
</tr>
<tr>
<td>1.50</td>
<td>Sind ortsfeste Schutzeinrichtungen vor mechanischen Beschädigungen gesichert?</td>
</tr>
<tr>
<td>1.51</td>
<td>Befinden sich elektrische Anlagen/Hauptverteiler in hochwasserfreien Bereichen?</td>
</tr>
<tr>
<td>1.52</td>
<td>Sind Maßnahmen zur Rückstausicherung getroffen?</td>
</tr>
<tr>
<td>1.53</td>
<td>Sind Behälter und Rohrleitungen ausreichend gegen Auftrieb und mechanische Beschädigungen durch Treibgut geschützt?</td>
</tr>
<tr>
<td>1.54</td>
<td>Ist die Sicherheit gegen Gebäudeauftrieb bis zum Bemessungshochwasser gewährleistet?</td>
</tr>
<tr>
<td>1.55</td>
<td>Besteht eine Elementarschadensversicherung und/oder wurden finanzielle Rücklagen gebildet?</td>
</tr>
<tr>
<td>1.56</td>
<td>Besteht eine Betriebsunterbrechungsversicherung?</td>
</tr>
<tr>
<td>1.57</td>
<td>Ist eine regelmäßige Überprüfung der Versicherungsverträge gewährleistet?</td>
</tr>
</tbody>
</table>
Checkliste Teil 2 - Unmittelbar vor Ereigniseintritt

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Punkt</th>
<th>erledigt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Werden die Lageberichte zu den aktuellen Hochwasserinformationen kontinuierlich verfolgt und ausgewertet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.2</td>
<td>Sind die Zuständigkeiten für die Verfolgung der aktuellen und erwarteten Wasserstände geregelt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.3</td>
<td>Sind die Informationen zu ggf. vergangenen Hochwasserereignissen ausgewertet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.4</td>
<td>Ist ein kontinuierlicher Informationsaustausch mit den regionalen Behörden sichergestellt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.5</td>
<td>Sind die Kommunikationsverbindungen (Telefonnummer, E-Mail, etc.) zu den wesentlichen Notfallkontakten überprüft?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.6</td>
<td>Ist die Festlegung der durchzuführenden Maßnahmen erfolgt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.7</td>
<td>Sind die zu erwartenden aufzubringenden Mannstunden überprüft und koordiniert?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.8</td>
<td>Sind die mobilen Schutzsysteme (Spundwände, Dammbalken, etc.) aufgebaut bzw. voll einsatzfähig?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.9</td>
<td>Sind potenziell betroffene Betriebsbereiche geräumt?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.10</td>
<td>Sind Maßnahmen zur Stilllegung von Betriebsbereichen gestartet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.11</td>
<td>Sind die Prozesse und Maßnahmen für eine interne Evakuierung gestartet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.12</td>
<td>Sind Gefahrstoffe (Chemikalien) sorgfältig abgedichtet oder aus der Gefahrenzone verlagert?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.13</td>
<td>Sind die Füllstände und die Auftriebssicherung von Behältern/Tanks überprüft?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.14</td>
<td>Sind die betroffenen Bereiche elektrisch freigeschaltet?</td>
<td>JA NEIN</td>
</tr>
<tr>
<td>2.15</td>
<td>Sind Technik/Geräte/demontierbare Einrichtungen aus betroffenen Bereichen ausgelagert?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.16</td>
<td>Ist die Rückstausicherung aktiviert?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.17</td>
<td>Sind Öffnungen zum Kanalnetz (Bodeneinläufe, Schächte, etc.) abgedichtet?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.18</td>
<td>Ist eine Notstromversorgung gewährleistet?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.19</td>
<td>Ist der Kraftstoff für die Notstromaggregate sichergestellt?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.20</td>
<td>Ist eine Notbeleuchtung sichergestellt?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.21</td>
<td>Sind die Pumpen gesetzt und einsatzbereit?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.22</td>
<td>Sind Ersatzbehälter für Abwasser organisiert?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.23</td>
<td>Sind Aufzüge auf die definierte Parkposition gefahren?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.24</td>
<td>Sind Fahrzeuge aus hochwassergefährdeten Bereichen und von Parkplätzen in sichere Bereiche verlagert worden?</td>
<td>□ JA</td>
</tr>
<tr>
<td>2.25</td>
<td>Sind Kunden und Lieferanten über den Sachverhalt informiert?</td>
<td>□ JA</td>
</tr>
<tr>
<td></td>
<td>Checkliste Teil 3 - Während des Hochwassers</td>
<td>erledigt</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>3.1</td>
<td>Sind die verantwortlichen Personen 24 Stunden am Tag erreichbar?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.2</td>
<td>Sind die Einsatzkräfte über aktuelle Gefahren und Risiken informiert?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.3</td>
<td>Sind alle notwendigen Pläne griffbereit?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.4</td>
<td>Ist eine funktionierende Krisenkommunikation sichergestellt?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.5</td>
<td>Ist eine kontinuierliche Verfolgung der aktuelle Wettermeldungen, Hochwasserwarnungen und Wasserstände gewährleistet?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.6</td>
<td>Ist der Kontakt zur Feuerwehr, Technisches Hilfswerk, usw. eingerichtet?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.7</td>
<td>Sind Kunden und Lieferanten über die aktuelle Situation informiert?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.8</td>
<td>Sind alle notwendigen Maßnahmen zum Schutz vor eindringendem Wasser umgesetzt?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.9</td>
<td>Ist die Freischaltung der gefährdeten Betriebsbereiche überprüft?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.10</td>
<td>Ist die Funktionsbereitschaft der Pumpen mittels Probelauf überprüft?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.11</td>
<td>Ist die Notstromversorgung mittels Probelauf überprüft?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.12</td>
<td>Ist eine Sicherung der leerstehenden Gebäude/Betriebsbereiche durch Kontrollgänge, etc. gewährleistet?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.13</td>
<td>Ist die Gebäudestandsicherheit gewährleistet?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>3.14</td>
<td>Wird das Schadensereignis detailliert dokumentiert (Berichte, Fotos, Videos…)?</td>
<td>□ JA □ NEIN</td>
</tr>
<tr>
<td>4.1</td>
<td>Sind Abläufe und Resultate der durchgeführten Maßnahmen dokumentiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.2</td>
<td>Sind alle beschädigten Anlagen/Ausrüstungen erfasst?</td>
<td>JA</td>
</tr>
<tr>
<td>4.3</td>
<td>Sind die Schadensinformationen (Berichte, Fotos, Videomaterial) ausgewertet?</td>
<td>JA</td>
</tr>
<tr>
<td>4.4</td>
<td>Sind Kosten und Schäden ermittelt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.5</td>
<td>Sind die Erfahrungen aus dem vorangegangenen Ereignis ausgewertet?</td>
<td>JA</td>
</tr>
<tr>
<td>4.6</td>
<td>Ist das Verfahren zur Anpassung des Notfallplans festgelegt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.7</td>
<td>Sind die Kunden und Lieferanten über die Verschiebung von Lieferzeiten/Produktionsmengen informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.8</td>
<td>Ist die Versicherung informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.9</td>
<td>Ist ein Termin zur Schadensbegutachtung mit der Versicherung vereinbart?</td>
<td>JA</td>
</tr>
<tr>
<td>4.10</td>
<td>Ist eine Schadensmeldung an die zuständige kommunale Verwaltung (Landratsamt, Stadt, Gemeinde) erforderlich und ggf. erfolgt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.11</td>
<td>Ist die zuständige IHK zur Unterstützung informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.12</td>
<td>Ist eine Meldung an das Arbeitsamt erforderlich und ggf. erfolgt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.13</td>
<td>Ist eine Meldung an die Krankenkasse/Berufsgenossenschaft nötig und ggf. erfolgt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.14</td>
<td>Ist eine Meldung an das Finanzamt erfolgt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.15</td>
<td>Ist bei laufenden Krediten die Hausbank informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.16</td>
<td>Ist ggf. der Vermieter informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.17</td>
<td>Ist überprüft, ob Fördermittel in Anspruch genommen werden können?</td>
<td>JA</td>
</tr>
<tr>
<td>4.18</td>
<td>Sind bei Beschädigung der Versorgungs-/Entsorgungseinrichtungen die entsprechenden Träger informiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.19</td>
<td>Sind Gelände, Gebäude und Anlagen fachgerecht gereinigt?</td>
<td>JA</td>
</tr>
<tr>
<td>4.20</td>
<td>Sind die betroffenen Technischen Gebäudeausrüstungen und Anlagen vor der Wiederinbetriebnahme auf Schäden überprüft und ggf. gewartet?</td>
<td>JA</td>
</tr>
<tr>
<td>4.21</td>
<td>Sind Ersatzteile/wiederzubeschaffende Anlagenelemente organisiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.22</td>
<td>Sind geschädigte Bausubstanzen überprüft? (z.B. Statik)</td>
<td>JA</td>
</tr>
<tr>
<td>4.23</td>
<td>Ist eine schnellstmögl. Trocknung der betroffenen Bereiche gewährleistet, um einen Schädlingsbefall (Schimmelbildung) zu vermeiden?</td>
<td>JA</td>
</tr>
<tr>
<td>4.24</td>
<td>Sind die Hochwasserschutzmaßnahmen wieder fachgerecht zurückgebaut?</td>
<td>JA</td>
</tr>
<tr>
<td>4.25</td>
<td>Ist der Austausch oder die Wiederbeschaffung von ggf. beschädigten/verbrauchten Materialien der Hochwasserschutzmaßnahmen organisiert?</td>
<td>JA</td>
</tr>
<tr>
<td>4.26</td>
<td>Sind Grundwasser und das Umfeld auf den Austritt von Gefahrstoffen überprüft?</td>
<td>JA</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

DWA, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (2009): Und was macht Ihr Hausanschluss?. Hennef.

GKV Spitzenverband (O.J.). Website des GKV. Online verfügbar unter: www.gkv-spitzenverband.de. Letzter Zugriff am 06.08.2015.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Aktiengesellschaft</td>
</tr>
<tr>
<td>ALKIS</td>
<td>Amtliches Liegenschaftskatasterinformationssystem</td>
</tr>
<tr>
<td>BBK</td>
<td>Bundesamt für Bevölkerungsschutz und Katastrophenhilfe</td>
</tr>
<tr>
<td>BfG</td>
<td>Bundesanstalt für Gewässerkunde</td>
</tr>
<tr>
<td>BHV</td>
<td>Betriebs-Haftpflichtversicherung</td>
</tr>
<tr>
<td>BMI</td>
<td>Bundesministerium des Innern</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit</td>
</tr>
<tr>
<td>BMVBS</td>
<td>Bundesministerium für Verkehr, Bau und Stadtentwicklung</td>
</tr>
<tr>
<td>DGM</td>
<td>Digitales Geländemodell</td>
</tr>
<tr>
<td>DIHK</td>
<td>Deutscher Industrie- und Handelskammertag e.V.</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung e.V.</td>
</tr>
<tr>
<td>DVGW</td>
<td>Deutscher Verein des Gas- und Wasserfaches e.V.</td>
</tr>
<tr>
<td>DWA</td>
<td>Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>EG</td>
<td>Europäische Gemeinschaft</td>
</tr>
<tr>
<td>EHS</td>
<td>Environment, Health & Safety</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FLOW MS</td>
<td>Hoch- und Niedrigwassermanagement im Mosel und Saareinzugsgebiet</td>
</tr>
<tr>
<td>FLYS</td>
<td>Flusshydrologische Software</td>
</tr>
<tr>
<td>GDV</td>
<td>Gesamtverband der Deutschen Versicherungswirtschaft e.V.</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographisches Informationssystem</td>
</tr>
<tr>
<td>GmbH</td>
<td>Gesellschaft mit beschränkter Haftung</td>
</tr>
<tr>
<td>GOK</td>
<td>Geländeoberkante</td>
</tr>
<tr>
<td>HKC</td>
<td>HochwasserKompetenzCentrum e.V.</td>
</tr>
<tr>
<td>HQ_{10}</td>
<td>Hochwasser mit einem statistischen Wiederkehrintervall von 10 Jahren</td>
</tr>
<tr>
<td>HQ_{100}</td>
<td>Hochwasser mit einem statistischen Wiederkehrintervall von 100 Jahren</td>
</tr>
<tr>
<td>HQ_{extrem}</td>
<td>Extremhochwasser</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>HWRM-Pläne</td>
<td>Hochwasserrisikomanagement-Pläne</td>
</tr>
<tr>
<td>HWRM-RL</td>
<td>Hochwasserrisikomanagement-Richtlinie</td>
</tr>
<tr>
<td>IHK</td>
<td>Industrie- und Handelskammer</td>
</tr>
<tr>
<td>KHG</td>
<td>Krankenhausfinanzierungsgesetzes</td>
</tr>
<tr>
<td>KMU</td>
<td>kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>KRITIS</td>
<td>kritische Infrastrukturen</td>
</tr>
<tr>
<td>kV</td>
<td>Kilo-Volt</td>
</tr>
<tr>
<td>LWG</td>
<td>Landeswassergesetz</td>
</tr>
<tr>
<td>LUWG</td>
<td>Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht des Landes Rheinland-Pfalz</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MULEWF</td>
<td>Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten des Landes Rheinland-Pfalz</td>
</tr>
<tr>
<td>MVZ</td>
<td>Medizinische Versorgungszentren</td>
</tr>
<tr>
<td>TGA</td>
<td>Technische Gebäudeausrüstung</td>
</tr>
<tr>
<td>TKG</td>
<td>Telekommunikationsgesetz</td>
</tr>
<tr>
<td>TrinkwV</td>
<td>Trinkwasserverordnung</td>
</tr>
<tr>
<td>TU</td>
<td>Technische Universität</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VBG</td>
<td>Verwaltungs-Berufsgenossenschaft</td>
</tr>
<tr>
<td>WHG</td>
<td>Wasserhaushaltsgesetz</td>
</tr>
<tr>
<td>ZÜRS</td>
<td>Zonierungssystem für Überschwemmung, Rückstau und Starkregen</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Sektoren kritischer Infrastrukturen (BBK o.J.a) ... 9
Abbildung 2: Schema der Risikoanalyse für kritische Infrastrukturen (in Anlehnung an BMI 2011) ...14
Abbildung 3: Betroffene kritische Infrastrukturen bei verschiedenen Hochwasserszenarien in einer Pilotgemeinde am Rhein (Datengrundlage: LUWG)..17
Abbildung 4: Bestimmung des Wasserstands über GOK an den Standorten der kritischen Infrastrukturen in einer Pilotgemeinde am Rhein (Datengrundlage: LUWG)18
Abbildung 5: Von Stromausfall potenziell betroffene Gebäude am Rhein bei HQ_{100} (Datengrundlage: LUWG) ...20
Abbildung 6: Allgemeine Struktur des Stromversorgungsnetzes (GUYOMARD 2015)22
Abbildung 7: Schema des Mittel- und Niederspannungsstromnetzes (rot: Mittelspannung; schwarz: Niederspannung) (RINNERT 2015) ...22
Abbildung 8: Anfälligkeit des Mittelspannungsnetzes durch Hochwasser (GUYOMARD 2015) ...23
Abbildung 9: Anfälligkeit des Mittelspannungsnetzes durch Hochwasser (GUYOMARD 2015) ...24
Abbildung 10: Wassergewinnung mit Anlagentechnik und oberirdischem Zugang25
Abbildung 11: Wasseraufbereitung ..25
Abbildung 12: Reinwasserbehälter ...26
Abbildung 13: Pumpen zur Speisung der Trinkwasserversorgungsleitungen26
Abbildung 14: Auswirkungen auf die Komponenten der Trinkwasserversorgung bei Hochwasser ...27
Abbildung 15: Schema der Mischkanalisation (DWA 2009) ..29
Abbildung 16: Schema der Trennkanalisation (DWA 2009) ...30
Abbildung 17: Pumpenschacht einer Pumpstation ...31
Abbildung 18: Kläranlage ...31
Abbildung 19: Betriebsstelle der Deutschen Telekom AG ..33
Abbildung 20: Kabelverzweigerkasten der Deutschen Telekom AG33
Abbildung 21: Koblenzer Haube (Dupp o.J., Deutsche Telekom AG)34
Abbildung 22: Komponenten des Gesundheitswesens (RIEGEL ET AL. 2007)36
Abbildung 23: Unterteilungsmöglichkeiten von KMUs (KELLER 2015)45
Abbildung 24: Der Weg zum Schutzkonzept (VBG 2011) ..50
Abbildung 25: Hochwasserschutzstrategien der Bauvorsorge ..52
Abbildung 26: Inhalt von Hochwasser-Notfallkonzepten ...59
Abbildung 27: Risiko als Produkt aus Gefährdung und Vulnerabilität (DWA 2014, in Anlehnung an DKKV 2003) ...60
Abbildung 28: Schema der Risikoanalyse für Gebäude (in Anlehnung an BMI 2011)61
Abbildung 29: Betroffene Gebäude für verschiedene Hochwasserszenarien in einer Pilotregion an der Mosel (Darstellung auf Grundlage digitaler Daten des LUWG RLP)

Abbildung 30: Hinweise zur Verhaltensvorsorge für die Bevölkerung in Bad Münster am Stein-Ebernburg

Abbildung 31: Erklärung “If-Then-Else” Abfrage (nach FAUST 2014)

Abbildung 32: Schematische Darstellung der Anordnung von Steckdosen in überflutungsgefährdeten Räumen

Abbildung 33: Schematische Darstellung eines Pumpensumpfes mit Druckleitung über die Rückstau Ebene zur Ableitung von Wasser ins Kanalnetz

Abbildung 34: Bewertungsschema der Hochwasser-Gebäudecheckliste (nach TRAUB 2015)
Tabellenverzeichnis

Tabelle 1: Einteilung der Branchen zu den Sektoren der kritischen Infrastrukturen (nach BBK o.J.b) ... 10

Tabelle 2: Abfolge einer Risikoanalyse für kritische Infrastrukturen (in Anlehnung an BMI 2011) .. 13

Tabelle 3: Wasserstand am Bezugspegel, ab dem eine Betroffenheit zu erwarten ist (Beispiel aus einem Pilotprojekt in Rheinland-Pfalz) .. 16

Tabelle 4: Kriterien der Funktionsanfälligkeit kritischer Infrastrukturen (in Anlehnung an BMI 2011) ... 19

Tabelle 5: Zuständigkeiten für die Umsetzung der Handlungsbereiche des Hochwasserrisikomanagements (Quelle: LUWG RLP 2011, LAWA 2010) 64